Notes B

C for Programmers of Daughter

Languages CMPE1700

Algorithms and Data Structures
Winter 2018

2 Jan 2018

Reference:
Brian W. Kernighan & Dennis M. Ritchie, The C Programming Language, Prentice Hall, 1978

B.1 Introduction

Thankfully, we all have some experience with C# programming. Because C++. C#, Java and (to a lesser
extent), Objective C all inherit from C and use similar syntax and keywords, you are already familiar with most
of C. The main difference is that C is a much simpler language, and can be learned quite quickly. Important
differences include:

C has a much smaller standard library.

C is not object-oriented”, so objects, interfaces and classes are not present.

C only automatically reserves storage space for variables that are declared inside a function. If you need
more storage space, you must allocate it (and clean it up) yourself.

e The facilities for printing to the console are quite different.

The main things we need to be aware of to move to programming in C are therefore (some of these depend
a bit on which version of the ISO C standard you are using. We'll tend to default to things that have been
supported from the beginning):

e C comments usually begin with /* and end with */, although the // syntax is supported.

Instead of bool variables, we will use int values like 1 and 0.

[/O will be performed using stdio.h functions.

Casting is performed with C-Style Casting.
e struct declarations are slightly different.

e Memory allocation as performed with malloc, realloc and free.

*Whatever that means

B. C for Programmers of Daughter Languages B -1 2 Jan 2018

B.1.1 Arrays and Strings

Arrays in C are just different enough from those in C# that they may occaisionally be the source of confusion.
Arrays in C are simply blocks of memory containing some set number of a smaller type. They cannot be
resized or dynamically allocated.

Syntax B.1: type namelsizel = {set, of, initial, walues}
Allocate an array with label name of type type, with size members. Optionally, the values of the mem-
bers of the array may be initiallized with a comma-separated list of values in braces.

For example, an array of integers could be crated with

1 int values[5] = {1,2,3,4,5};
printf ("\%i",values [2]); /* Prints the value 3 (arrays count from 0)

Strings are not a distinct type, like in C#, but simply a special case of an array of characters. By convention,
we always have the value 0 as the last element in a string array to indicate the end. This means we don't have
to always send the size of the string along with the variable when passing it to other methods. The quotation
mark syntax makes use of this convention:

char Name[] = {’B’,’0’,’b’,0}; /* Size optional with value list */
char SameName[] = "Bob"; /* Exact same values (0 added automatically) */

B.1.2 Casting

In C, type casting is syntactically similar to what we saw in C#, although the underlying mechanics are a bit
different.

Syntax B.2: (type) walue
Returns value of any type, converted to type tfype.

For example:

e int iX = (int) cVal

o fAve (float) iTot/iNum - in this case, iTot is converted to a float prior to the division.

e pFoo = (int *) pBar - conversion of pointer types

B.1.3 Standard I/O

In C#, we are accustomed to using the Console class for /0. In C, that classes (and all classes) are unavailable,
so we must use standard |/0, as defined in the stdio.h library. All of these functions and techniques require
a #include stdio.h declaration. When that declaration is made, the standard streams, stdin (standard
input), stdout (standard output) and stderr (standard error,) are automatically available.

2 Jan 2018 B-2 B.C for Programmers of Daughter Languages

Output

To send output to the standard output (stdout, typically the active console, unless redirected), you can use
one of several functions:

Syntax B.3: int putchar(int c);
Puts the single character denoted by c into stdout. Returns the ASCII value of the character written.

Syntax B.4: int puts(const char * s);
Puts the zero-terminated string pointed to by s into stdout. This fuction will always output a new line
at the end of output. Returns a non-negative number on success, EOF on error.

For an example, see below.

Messages can also be sent to standard error (stderr) using fputs and fprintf, which are identical to puts
and printf, save they also take an argument of a target stream:

Syntax B.5: int fputs(const char * s, FILE * stream)
Puts the zero-terminated string pointed to by s into the stream pointed to by stream. Use \n to output
a new line. Returns a non-negative number on success, EOF on error.

For example:

fputs("Error: Invalid Operand\n",stderr);

In fact, all error messages should be sent to stderr.

Input

Input can be obtained from stdin (typically mapped to the keyboard, unless redirected) using some standard
functions:

Syntax B.6: int getchar(void);
Returns the next character from stdin.

Syntax B.7: char * gets(char * s);
Reads a line from stdin and stores it in a zero-terminated string pointed to by s. This function should
never be used, because it does not check for buffer overrun

Becuase of the buffer overrun problem with gets, you should always use getchar or fgets instead:

Syntax B.8: char * fgets(char * s, int size, FILE* stream);

Retrieves at most size-1 characters from the stream pointed to by stream and stores them in a zero-
terminated string pointed to by s. Will stop reading if a newline(carriage return) or end-of-file is encoun-
tered.

B. C for Programmers of Daughter Languages B -3 2 Jan 2018

22

27

For example:

char szBuffer [256];
puts("Give me some words:");
fgets (szBuffer ,256,stdin);

For additional examples, see below.

Examples

The following example illustrates the use of getchar and putchar:

/* Demo of getchar and putchar x/
#include<stdio.h>

int main(void) {

int i = 0;
char ¢ = 0;
char stringl[] = "This is a message";

/* Print my message out, one char at a time */
while (string[i]) /* Is the character at i equal to 07 */
{
putchar (stringl[il);
++1i;
}
putchar (’\n’); /* New Line */

/* Echo what the user types, up to CR */
puts ("Type something and I’11 play it back...\n");

while (c != ’\n’ && c != ’\r’) /* While ¢ isn’t a newline or carriage return */
{
¢ = (char)getchar(); /* getchar returns int */
putchar (c);
}

fflush(stdin); //Make sure we clear any chars in the buffer
fflush(stdout); //Make sure our code goes out to screen

return O;

Listing 1: notes.B/chario.c

And this one illustrates the use of puts and fgets:

/* Demo of puts and fgets */

#include<stdio.h>
#define BUFFSIZE 256

int main(void) {

char buffer [BUFFSIZE] = ""; /% String Buffer x/
puts ("Say something:");

fgets (buffer ,256,stdin);;

fprintf (stdout,"You said: %s",buffer);
fputs("This is how you emit an error\n", stderr);

return O;

Listing 2: notes.B/stringio.c

2 Jan 2018 B-4 B.C for Programmers of Daughter Languages

20

25

Formatted Output

In addition to the simple | /O described above, the stdlib.h library includes facility for fairly complex formatted
output with the printf function:

Syntax B.9: int printf(const char * format, ...);

Prints the variables and values included as ... according to the format string specified as format.
Valid format flags include %i,%d - integer numeric output; %s - string output, %p - addresses ; %i=c -
character; %f - floating point value ; %% - a percent sign.

The printf function (you can read more with man 3 printf) inserts the values in its argument list into the
flag placeholders in the format string and prints out the string (without a terminating newline). To add a
newline, simply use \n. For example:

/* Demo of printf =/
#include<stdio.h>

int main(void) {
/* declare and initialize sample variables */

char ¢ = ’A’;
int i = -7;
unsigned int u = 42;

double d = 3.14159;

/* c is <A>, but <65> as a number. */

printf ("c is <%c>, but <%d> as a number.\n", c, c);

/* i is <-7>, but <4294967289> if you use %u */

printf ("i is <%d>, but <%u> if you use %%u\n", i, i);

/* u is <42>, but still <42> if you use %d */

printf ("u is <%u>, but still <%d> if you use %%d\n", u, u);

/* d is < 3.14> x/

printf ("d is <%6.2f>\n", d);
/% d is <3.142> %/

printf ("d is <%.3f>\n", d);
/* d is < 3.142> *x/

printf ("d is <%10.3f>\n", d);

return O;

Listing 3: notes.B/printf.c

Formatted Input

You can also use scanf to input several variables, using similar formatting commands. The main difference
to bear in mind is that the arguments to the variables to store input in must be pointers, so scanf takes
addresses as arguments. Note further that arrays (such as strings) automatically convert to addresses, so no
& is required for an array name.

Syntax B.10: int scanf(const char * format, ...);

Retrieves values for storage in variables included as ... according to the format string specified as
format. Valid format flags include %1,%d - integer numeric output; %s - string output, %p - addresses ;
%i=c - character; %f - floating point value ; %% - a percent sign. Variables should be represented by a
pointer to their memory location.

For example:

B. C for Programmers of Daughter Languages B -5 2 Jan 2018

/* A nice demo of scanf from Wikipediax*/
#include<stdio.h>

4| int main(void) {

int n;

while (scanf ("%d", &n) == 1)
printf ("%d\n", n);

return O0;

9l

/* Will take integers typed messily, with tabs, spaces and */
/* returns, and cleanly convert them to just the numbers x/

Listing 4: notes.B/scanf.c

Note also that you can limit the maximum number of characters input by adding a number between the % and
the type specifier (e.g: %79s). There are a number of other options available for format specifiers, see man
scanf.

B.1.4 Structures

In C, the syntax for declaring structures is similar to that of C#:

struct person
{
3 char LastName [40];
char FirstName [40];
int Age;
}; /* Remember the semi-colon */

However, unlike C#, when declaring structures in C, you must include the keyword struct:

struct person me;
strcpy (me.LastName , "Mbogo");

You can also declare pointers (more on this later in the course):

struct person * pDude = &me; /* Pointer to instance created above */
strcpy (pDude->LastName , "Foobar");

Note that the use of the member operators (. and ->) to access members of a struct and pointer-to-struct,
respectively.

It is also common to define and declare structures simultaneously:

struct card
{
3 char * face;
char * suit;
} a, deck[52], *cPtr;

/% ok ok ok ok ok ok ok ok sk ok ok ok ok oK ok ok sk ok ok ok ok ok o ok o ok ok ok ok

8 Creates a single object (a),
Array of objects (deck),
Pointer to object (*cPtr)

K 3K o oK oK K oK oK K oK oK K oK oK K oK oK K oK K K oK K K oK K K ok ok ok K /

2 Jan 2018 B-6 B.C for Programmers of Daughter Languages

Typdefing Structures

It is common to use a typedef to simplify the declaration of structs, which allows you to use syntax similar
to that for C#:

typedef struct person Person;
Person bob;
strcpy (bob.FirstName , "Bob");

You can also declare the struct and typedef it simultaneously (in the example below, struct person and
Person) are the same type):

typedef struct person
2| {
char LastName [40];
char FirstName [40];
int Age;
} Person;
7| Person bob;
strcpy (bob.FirstName , "Bob");

You can even skip giving the struct a name and just typedef an anonymous struct:

typedef struct
2| {
char LastName [40];
char FirstName [40];
int Age;
} Person;
7| Person bob;
strcpy (bob.FirstName , "Bob");

This is the way that we will tend to declare structures—with a typedef giving the struct a friendly name,
followed by using that name to declare actual instances.

B.1.5 Dynamic Memory Allocation

In C, Dynamic Memory Allocation (DMA) is accomplished using the malloc and free operators to allocate
and deallocate memory from the free store.

Note: In order to use dynamic memory allocation in C, you must include the standard library: stdlib.h.

malloc - void * malloc(int)

malloc is used to allocate memory from the free store (heap) in much the same way that new is used in C++,
or even new in C# (which automatically manages dynamic memory for you). The primary differences are:

e malloc allocates a particular number of bytes (the number of bytes is the only argument to malloc,
and will not automatically allocate memory to the size of a type.

B. C for Programmers of Daughter Languages B -7 2 Jan 2018

e malloc always returns a void pointer (void *), so the return value must be cast to a pointer to the
type desired.

Syntax B.11: (type *) malloc(sizeof (type) * length)
Returns a pointer to type that points to a dynamically allocated array of type fype and length length. In
the degenerate case of allocating one item, length = 1 and is left out.

For example, if | wished to create a dynamically allocated int variable, | could use:

int * foo = (int *) malloc(sizeof (int));

Note the use of the sizeof function to return the size (in bytes) of a type or variable.

| could also allocate an array of 10 ints with:

int * bar = (int *) malloc(sizeof (int) * 10);

Note: malloc returns NULL if it is unsuccessful in allocating memory

It is also quite common to allocate structs:

#include <stdlib.h>

/*Simple Linked List */
4| struct node; //Forward declaration of node, needed for {\tt next} pointer.

struct node
{
int data;
9 struct node * next;

}

/* Create and return a 3 node list
struct node * BuildList ()

1] {
/* Create three nodes */
nl = (struct node *) malloc(sizeof(struct node));
n2 = (struct node *) malloc(sizeof (struct node));
n3 = (struct node *) malloc(sizeof(struct node));
19
/* Set dat values, and connect nodes to each other */
nl->data = 1;
nl->next = n2;
n2->data = 2;
24 n2->next = n3;
n3->data = 3;
n3->next = NULL; /% Use NULL pointer for end of 1list x/
return nl; /* Return first item (head) of list */
}

If, for some reason, we wanted an array of nodes:

#define NUMNODES 10
2 nodes = (struct node *) malloc(sizeof(struct node) * NUMNODES);

2 Jan 2018 B-8 B.C for Programmers of Daughter Languages

free - void free(void x*)

C# is nice enough to handle all this memory stuff behind the scenes. In languages that are designed for real
programmers, we must ensure that we release any memory that we dynamically allocate, or we will have a
potential memory leak. This is done using the free() operation, passing a pointer to the memory to be
freed as the only argument.

Note: Do not attempt to free a NULL pointer, it will generate a runtime error.

#include <stdlib.h>

31 if (foo !'= NULL) free(foo);
foo=NULL;
if (bar != NULL) free(bar);
bar=NULL;

if (nodes !=NULL) free(nodes);
8| nodes=NULL;

Note: Even though free accepts a void * for its argument, we do not need to cast our pointers,
because any pointer will implicitly cast to void *, even though the reverse is not true.

Warning: You must be careful to only de-allocate the same location once. A good way to accomplish
this is to set the pointer to NULL after freeing it and testing for NULL before attempting a free (as in the
example above).

Note: There are other functions in the malloc family, including calloc which can simplify the allocation
of arrays, and realloc, which can be used to resize arrays. We will not cover them in detail here, but
we may look at them when we take up DMA later in the course. Students may wish to investigate the
man pages.

B.1.6 Filel/O

In addition to the standard 1/O streams (stdin, stdout, and stderr), it is possible to use the |/O commands
to read and write from files in the filesystem. The only additional requirement is that the file in question be
linked to from a file stream (the FILE type).

Note: Recall that nearly everything in Unix and Linux is represented as a file, so File /O is a very
powerful tool.

In order to instantiate a stream, create a FILE pointer (note that FILE is in all caps, and is defined in the
standard library, std1lib.h):

#include <stdlib.h>
2 FILE * fptr;

The FILE pointer may then be used to open a file using the fopen() (FILE * fopen (char * , const
char *)) call from the standard library:

Syntax B.12: fopen(filename,mode

B. C for Programmers of Daughter Languages B -9 2 Jan 2018

Returns a FILE * pointer to the file at filename, opened with mode mode, when mode is one of: "r",
Ilr+|l llwll IIW+lI llall or lla+ll.

The effect of the modes are as follows:

mode Used For Create File? Existing File?
"a" Appending Yes Appended To
"a+" Reading and Appending Yes Appended To
"r" Read Only No If not found, fopen returns NULL
"r+" Read and Write No If not found, fopen returns NULL
"w" Write Only Yes Destroyed
"w+" Read and Writ Yes Destroyed

Thus, a file may be opened for reading as follows:

#include <stdlib.h>
3| #define MYFILE "/var/tmp/myfile"

FILE * fptr;
fptr = fopen(MYFILE,"r");

We may then use our fprintf () function (from stdio.h, see below) to write to the file:

int i = 4;

if (fptr!=NULL)

{

4 fprintf (fptr,"I am writing the number %d to my file.",i);
} else fputs("Error Opening File",stderr);

Of course, if we open the file, we should close it:

fclose (fptr); /* Flush Buffers and Closex/

Reading and Writing with Files

In Unix and Linux, console |/0O is effectively identical to file I/O, because the standard streams are themselves
files (stdin, stdout, and stderr are all of type FILE *).

All we need are versions of our |/O functions that accept a generic FILE pointer instead of using a default.
We have already seen fputs and fgets.

In addition, there are generic file versions of putchar and getchar:

Syntax B.13: int fputc (int ¢ , FILE *stream);
Writes the character c, cast to unsigned char, to the stream defined as stream.

Syntax B.14: int fgetc(FILE * stream);
Reads the next character from stream and returns it as an unsigned char castto an int or EOF on an
end-of-file or error.

2 Jan 2018 B-10 B. C for Programmers of Daughter Languages

And, of course, formatted 1/0 is supported:

Syntax B.15: int fprintf(FILE * stream, const char * format ,

Prints the output specified by the format string, with values supplied as additional arguments inserted,
to the output stream FILE. Returns the number of characters printed.

Syntax B.16: int fscanf(FILE * stream, const char * format, R

Scans the input FILE stream, retrieving types described in the format string, storing values in the
variables pointed to by the additional argument pointers.

@@@@ Copyright © 2018, AJ Armstrong. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
BY NC SA

4.0 International License. Queries and comments concerning this document are welcome. Contact the author, AJ Armstrong,
at aja@nait.ca

B. C for Programmers of Daughter Languages B - 11 2 Jan 2018

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:aja@nait.ca

	Introduction
	Arrays and Strings
	Casting
	Standard I/O
	Structures
	Dynamic Memory Allocation
	File I/O

