

NAIT CoursePack CP1503
Revision R12

All Rights Reserved

This publication © The Northern Alberta Institute of Technology (2019). All
rights are reserved. No part of this publication may be reproduced, or
transmitted in any form or by any means, or stored in a database and retrieval
system, without the prior written permission of the copyright holder.

Address all inquiries to:
The Northern Alberta Institute of Technology

11762 - 106 Street, Edmonton, Alberta T5G 2R1

Introduction to

Embedded Systems

CMPE2200

(This page intentionally blank)

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Table of Contents Page i

Table of Contents
Topic 1 – Embedded Systems Theory and the 9S12X Device ... 1

Required supporting materials ... 1
Rationale .. 1
Expected Outcomes ... 1
Where are you at? .. 1

Embedded Controllers ... 2
The MC9S12XDP512 Microcontroller ... 2
The CNT MC9S12XDP512 I/O Board .. 5
Types of Interfaces .. 11
Port Addressing ... 12
Switches and LEDs .. 14

S12XCPU Assembly Language and the S12XCPU Microprocessor Core 16
Accumulators and Registers .. 17
Memory ... 19
Memory Map ... 21

Topic 2 –Microcontroller Programming .. 22

Required supporting materials ... 22
Rationale .. 22
Expected Outcomes ... 22
Connection Activity ... 22

Assembly Language Fundamentals .. 23
Assembler Directives ... 23
Instructions .. 23
Rudimentary Debugging Skills .. 26

Documentation and Comments ... 28
Using the Skeleton.txt File .. 29
Flowcharting .. 31
Subroutines .. 32
Libraries of Subroutines .. 33

S12XCPU Addressing Modes ... 35
Inherent - INH ... 35
Immediate - IMM .. 35
Extended – EXT .. 36
Direct – DIR .. 36
Relative – REL .. 36
Indexed – IDx, IDx1, IDx2, [IDx2], [D,IDx] .. 38

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Table of Contents Page ii

Frequently-Used Instructions ... 39
Masks and Bitwise Boolean Logic .. 41

Commands affecting an entire register or memory location .. 41
Commands affecting selected bits ... 41
Commands responding to selected bits .. 42

Using Variables and Constants .. 43
Programming in C ... 45

Setting Up an ANSI C Project ... 45
ANSI C Skeleton File .. 46

Switches and LEDs with ANSI C .. 47
Functions ... 47
Libraries of Functions .. 48
Summary .. 48

Numeric Manipulation .. 49
Understanding Base 10 .. 49
Converting Binary to Decimal ... 49
Converting Hexadecimal to Decimal ... 50
Converting Hexadecimal to Binary ... 50
Converting Binary to Hexadecimal ... 51
8 Bit Arithmetic ... 51
Working with 2’s Complement.. 52

Topic 3 –Interfacing With Internal and External Devices.. 53

Required supporting materials ... 53
Rationale .. 53
Expected Outcomes ... 53
Connection Activity ... 53
Disclaimer .. 53

Interfacing the ICM7218A 8-Digit LED Display Driver .. 54
ICM7218A Programming Tables .. 56
Sending Data to the ICM7218A .. 57
Seven Segment Display Library Components ... 58
Seven-segment Display Control Using ANSI C .. 59
SevSeg_Lib.h ... 59
SevSeg_Lib.c ... 59

Binary-Coded Decimal Representation and Manipulation .. 61
Converting Hexadecimal Values to BCD .. 62
Misc_Lib.h ... 63
HexToBCD .. 64
BCDToHex .. 65

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Table of Contents Page iii

Switch Management ... 67
Detecting Switch Change of State ... 67
Debouncing .. 69
SwCk() Debounced Switch Routine .. 69

Parallel Interfaces: Get On the Bus .. 70
Data Bus .. 70
Address Bus ... 70
Control Lines ... 70

LCD Displays Using the Hitachi HD44780U Controller .. 71
The HD44780-controlled LCD on the 9S12X Development Kit ... 71
Operation ... 71
HD44780 Instructions .. 73
LCD Controller Initialization .. 74
LCD_Init .. 75
LCD_Ctrl ... 78
LCD_Busy ... 78
LCD_Char ... 79
LCD_String ... 79
LCD_Addr ... 80
LCD_Pos ... 80
Character Generation ... 81
LCD_CharGen Example .. 83
LCD_CharGen8 Example .. 84
ASCII Code Manipulation ... 85
ASCII Table ... 85
Upper and Lower Case ASCII Codes .. 87
Hexadecimal to ASCII conversion .. 87

The Serial Communications Interface ... 88
Initializing the Serial Communications Interface .. 91
SCI0 Library .. 95
Communicating through the Serial Communications Interface ... 96
Terminal Emulation ... 97
SCI0_TxString ... 100
The VT100/VT52 Terminal ... 102
Escape Sequences .. 102
Floating-Point Math in ANSI C ... 105
<stdio.h> .. 106
<math.h> .. 107

Interrupts ... 108

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Table of Contents Page iv

Interrupts in S12XCPU Assembly Language .. 108
Interrupts using ANSI C .. 112
Input-Driven Interrupt ... 114

Accurate Timing ... 115
Periodic Interrupt Timer (PIT) ... 115
Enhanced Capture Timer ... 117
Timer Initialization .. 119
Setting the Timer Compare Event Duration .. 121
Delays vs. Intervals .. 122
Delay Function for Misc_Lib .. 122
Interrupt-Driven Timer .. 123
Real-Time Loop ... 126
Input Capture and Pulse Accumulation ... 128
Input Capture ... 128
Pulse Accumulation ... 130

A To D Conversion .. 132
Setting up VRH .. 133
Configuring ATD0 .. 134
Using ATD0 .. 137

Pulse-Width Modulation .. 138
Generating Waveforms .. 139
True Pulse-Width Modulation ... 144

I2C Bus .. 147
Basic I2C Communication Using the 9S12X ... 149
LTC2633HZ12 I2C DAC – 16-bit Data Writes ... 152
MPL3115A2: Standard 8-bit Reads and Writes ... 157
M41T81 Real-Time Clock – Standard 8-bit Reads and Writes ... 160
Position Information with the LSM303DLHC – Standard 8-bit Reads and Writes ... 163
3-Axis Accelerometer .. 163
3-Axis Magnetometer and Temperature Sensor .. 168
Device with 16-bit Internal Addresses (e.g. EEPROM) – Write and Read Functions 171
I2C Reliability Measures .. 172

Parting Words ... 172

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 1

Topic 1 – Embedded Systems Theory and the 9S12X Device

Required supporting materials
• This Module and any supplementary material provided by the instructor
• Device documentation provided in the appendix of this CoursePack
• CNT MC9S12XDP512 Development Kit and 12 VDC Power Adapter
• USBDM Pod or BDM Pod and “A to B” USB Cable
• CodeWarrior

Rationale
Embedded microcontrollers are at the heart of much of modern technology, ranging from
automobiles to phones to appliances. An understanding of, and ability to manipulate, these
devices is of paramount importance to the Computer Engineering Technologist.

Expected Outcomes
The following course outcome will be partially addressed by this module:

Outcome #1: Develop and debug assembly language programs using an Integrated

Development Environment (IDE).

Outcome #2: Create assembly language programs that manipulate data using operations
and expressions.

As this course progresses, you will refine the basic skills and understanding of embedded
systems and assembly language programming you learn as you complete this topic.

Where are you at?
In most automobiles today, there’s at least one “computer module”, controlling the door
locks, brakes, ignition, fuel injection, lights, and engine monitoring, just to name a few of
the diverse applications of the microcontrollers in the system.

When using your computer, if you hit “print”, you expect to get ink on a sheet of paper,
following a pattern you see on-screen. In order for that to happen, though, at least one
microcontroller in your printer kicks into action, activating motors, solenoids, relays, LEDs,
and probably an LCD display, all the while monitoring a set of switches on the front panel in
case you decide to pause or cancel the print job, along with a bunch of switches and sensors
that check for the presence of paper, a paper jam, or an empty ink cartridge. The micro-
controller also communicates with your computer, providing status messages or alarms.

These are just a couple of examples of embedded microcontrollers at work, doing the
background work we rarely think about, until something goes wrong. Sometimes, even if
something does go wrong, the microcontroller might recover before you even notice.

Wouldn’t you like to be in control of a device capable of such a diverse array of abilities?

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 2

Embedded Controllers
When it comes to working with a microcontroller like the 9S12X, neatly dividing up what
you need to know into discrete packages is nearly impossible: In order to interface with
peripherals, you need to know how to write programs in S12XCPU Assembly Language
and/or a higher level language like ANSI C, how to address registers and ports, how to do
bit-wise masking, how to get around the Integrated Development Environment (IDE), how
to debug a program, and so on. Consequently, this CoursePack will not be divided into
nicely packaged “Objectives” that cover one concept each. Instead, you will be introduced
to the main outcomes for a particular module, and will be taught whatever else you need in
order to master these outcomes.

What’s the difference between a microprocessor and a microcontroller?

A microprocessor is a device that can be programmed to perform computational or
decision-making tasks following instructions found in program memory, as it manipulates
addressed locations in storage memory. Although these storage memory locations may
actually be digital logic interfaces (for example, a bank of switches for input or an array of
LEDs for output), the microprocessor treats all addressed locations as memory.

A microcontroller consists of a microprocessor embedded within a collection of peripheral
modules, each designed to carry out specific tasks under the control of the embedded
microprocessor. The microprocessor-to-peripheral interface is designed to operate
“seamlessly” – all controls and handshaking are managed internally, providing the user with
a greatly-simplified task when it comes to programming (although you may not feel that
way initially – if you doubt this, try getting a microprocessor like the MC6809 to talk to a
Comm port, as compared to asking your 9S12X to use its built-in SCI Port!)

The MC9S12XDP512 Microcontroller
In the “Data Sheet” for the MC9S12XDP512, you will find a block diagram of the
microcontroller you will be working with on page 35. This is a huge document that you will
occasionally need to access. There’s no need to have a paper copy of this (it’s over 1300
pages long!), but make sure you can access it. The link below is in Moodle, too.
http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12XDP512RMV2.pdf

The block diagram, partially annotated, is shown on the following page. The parts that are
labelled are of interest to us in this course. You may, for your own work, find that you can
use other modules that aren’t covered here, such as the Serial Peripheral Interfaces (SPI)
used for talking to a number of commercially-available devices, or the Controller Area
Network Buses (CAN Bus) used as the standard communication interface between electronic
devices in automobiles and other vehicles.

One thing that should stand out to you when looking at this block diagram is that the
microprocessor is deeply embedded in this device, surrounded by a wide range of
peripherals, interfaces, and ports that are under its control – hence the term
“microcontroller”.

http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12XDP512RMV2.pdf

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 3

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 4

The microcontroller kit used in this course goes one step further: we now embed the
9S12XDP512 microcontroller into an electronic interface with external peripherals also under
its control. Again, in the following image, you can see that the microprocessor core ends up
being a pretty small, but central, part of the hardware used in this course.

Let’s work backwards through the diagram above.

The microprocessor core is made up of a group of registers that you should have become
acquainted with in an previous course (A, B, D, X, Y, PC, SP, and CCR), along with the
actual logic unit and an instruction set. The logic unit acts according to the instructions in
the instruction set, as presented to it in a program written by you and stored in ROM, and it
does all of its work using the registers.

The core operates within the address space. This is where it gets its instructions from (in
ROM). While it operates, it may read from RAM or ROM, and it may write to RAM. More
importantly, though, it reads from and writes to a set of registers that are directly
connected to the microcontroller’s peripherals.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 5

The peripheral modules are the interface with the “outside world”. We’ve identified a
number of these previously. Between the modules and the pins in the following diagram is
the “PIM” – Port Integration Module – which allows us either to connect to the peripheral or
to use the pins as “GPIO”. GPIO is “General Purpose Input/Output”, and refers to pins
available on the IC that can be used individually or in groups as digital inputs and outputs,
under the programmer’s control. On this microcontroller, as with most, almost all of the
pins associated with other peripherals can, instead, be used as GPIO.

The biggest circle represents the electronic interface, which contains all the components
on the printed circuit board. Most of the external peripherals on the printed circuit board
are accessed using GPIO, although the speaker is intended for operation using the pulse-
width modulator module (PWM), the Comm port is controlled by one of the Serial
Communication Interface (SCI) modules, and the DAC is accessed using one of the Inter-
Integrated Circuit (I2C) busses. Here’s how our electronic interface is wired to the
microcontroller in the kit designed for this course.

The CNT MC9S12XDP512 I/O Board
On the pages following, you’ll find the schematics for the microcontroller kit, showing how
these connections are actually wired up to provide us with the electronic interface shown in
the previous bubble diagrams and block diagrams. Higher-resolution versions should be
available in Moodle or from your instructor.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 6

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 7

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 8

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 9

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 10

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 11

Types of Interfaces
Since a microcontroller can be embedded in a wide variety of systems, there will, of
necessity, be different types of interfaces required. The following are the main types of
interfaces.

General Purpose Input/Output (GPIO) – GPIO interfacing simply provides or expects
logic levels at pins connected to the microcontroller. Conditions in the connected device are
read into one or more GPIO pins configured as inputs, and control signals are driven out of
one or more GPIO pins, configured as outputs. On the 9S12X, as you have seen, most of
the interface pins can be programmed independently to act as GPIO. A logic HIGH or “1” on
our device is +5 V, a logic LOW or “0” is 0 V.

We will use GPIO to interface to things like the switches and LEDs on our board.

Bussed (Parallel) Interface – A parallel interface involves the simultaneous transfer of
multiple bits of information on separate (parallel) copper traces. The microprocessor in a
personal computer operates in bussed mode. This requires an address bus capable of
locating each unique address in the address space (for a 32-bit address bus, this would be
approximately 4.3 billion possible locations). It also requires a data bus capable of
delivering all the bits required by that location in a single operation, each on a separate data
line (sixteen for a 16-bit data bus). In addition, there will be control lines such as
Read/Write, Enable, and Strobe that establish correct communication between the
microprocessor and the peripheral. On the block diagram, you can see that PTA and PTB
can be used to establish a bussed interface. This would be useful in an application involving
a parallel device or where more memory is required than what is available inside the
microcontroller (which won’t be a problem for us in this course). Most microcontrollers do
most of their bus-work internally, taking away the complexity of design and programming.
The 9S12X has an internal bus to interface with its memory modules and all of the devices
within which it is embedded. All we need to know is the addresses associated with the
device we want to talk to, what needs to be communicated, and the speed at which
communication takes place, which is based on the internal bus clock or system clock. (For
our board, this is half of the 16.000 MHz crystal speed, or 8.000 MHz.)

In this course, we use GPIO to create simpler parallel interfaces to two of the devices on
board: we use a simple one-way 8-bit data bus with control lines to control a 7-segment
display controller; and we use a two-way 8-bit data bus with control lines to communicate
with a second microcontroller embedded in our LCD display.

Serial Communication – Rather than sending all bits simultaneously on separate parallel
lines, it is possible to send bits one after the other (sequentially) on a single transmission
line (with a current return to complete the circuit). In a system like RS-232 (used by us to
communicate with the Comm Port of a computer using an SCI module of the micro, or for
communicating using a Bluetooth adapter), separate transmission lines are used for
transmitting and receiving. In a system like USB 2.0 or USB 3.0 (used by us to establish a
programming link between the computer and our board through the BDM Pod), a single pair
of conductors is used for communication in both directions. Serial communication requires
protocols establishing voltage levels, timing parameters, and “handshaking” to ensure that
data is actually delivered and received.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 12

Port Addressing
Let’s focus on one set of port pins shown in the top right corner of the block diagram:
PortAD.

The I/O connections shown, PAD00 through PAD23 can either be connected to the A to D
converters (ATD0 and/or ATD1) or they can be redirected using the PIM blocks shown as
“DDRAD0&AD0” and “DDRAD1&AD1”. To begin with, we will be using a subset of these pins
as GPIO, because they are connected to three LEDs and five switches on the board (more
on that later).

Notice the different typefaces, fitting into the sidebar for the block diagram. PAD00 to
PAD07 are in regular type, which means they are available for all flavours of the
9S12XDP512. PAD08 to PAD15 are in boldface, meaning they are not available on the
smaller 80-pin version of the IC. PAD16 to PAD23 are bold italics, meaning they are not
available on either the 80-pin version or the 112-pin version, which is installed on our
board. Thus, we have access to PAD00 to PAD07, which are connected to ATD0, and PAD08
to PAD15, which are connected to ATD1.

In the Data Sheet, “Chapter 4: Analog-to-Digital Converter (ATD10B16CV4) Block
Description” starting on page 125 describes the full functionality of ATD1, and “Chapter 5:
Analog-to-Digital Converter (S12ATD108CV2)” starting on page 159 describes ATD0.
Clearly, there’s a lot of information required to fully implement this corner of the diagram!

The figure below shows ATD1, and there’s a similar picture later on that shows ATD0. I’ve
included this figure simply to show one part of the PIM for this set of pins that doesn’t
appear on the main block diagram: ATDDIEN.

ATDDIEN is used to enable the connection between the associated pins and the digital
module. “DIEN” stands for digital input enable. This needs to be turned off for A to D
functionality, but turned on for GPIO activity for any pin that’s used for input.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 13

One other interesting thing to learn from this diagram is that the labels used in the modules
don’t necessarily correlate to the ones for the whole IC: AN0 to AN15 for the module is
actually AN8 to AN23 for the microcontroller!

The ports and control registers are all accessed by the microprocessor by means of unique
addresses. For example, the 16 bits we can access of the 24-bit port labelled PAD occupy
the addresses 027116 and 027916; the two 8-bit Data Direction registers for the accessible
parts of this port are at addresses 027316 and 027B16. The ATDDIEN (digital input enable)
registers for the accessible parts are found at addresses 02CD16 and 008D16.

Trying to remember all these addresses, and all the rest of the register addresses we’ll be
using, would be a daunting task. To help with this, the developers at Freescale have

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 14

created an “include” file called mc9s12xdp512.inc that we’ll use when we program in
S12XCPU Assembly Language, and a corresponding mc9s12xdp512.h file we’ll use when we
program in ANSI C. This file assigns labels to all the ports (and even to masks for each
pin!). These labels are easier to remember than the hex addresses; just remember that the
labels represent the actual addresses, but only if the “include” file is actually included.

Here’s a little table that summarizes what we’ve been saying about Port PAD. Notice that
the addresses start with “$”, which, in S12XCPU Assembly Language, means hexadecimal.
We’ll use this notation to indicate numbers in hexadecimal instead of using nnnn16, until we
start programming in C – at which point we’ll revert to the 0xnnnn format you’re used to.

Port
(Block
Diagram)

Port Name
(mc9s12xdp512.inc)

Addresses Function

AD0 PT1AD0 $0271 Lowest 8 bits

AD1 PT01AD1 $0278 Upper 16 bits

 PT0AD1 $0278 Highest 8 bits (n/a)

 PT1AD1 $0279 Middle 8 bits

DDRAD0 DDR1AD0 $0273 Lowest 8 Data Direction

DDRAD1 DDR01AD1 $027A Upper 16 Data Direction

 DDR0AD1 $027A Highest 8 DDR (n/a)

 DDR1AD1 $027B Middle 8 DDR

ATDDIEN ATD0DIEN $02CD Lowest 8 Input Enable

ATDDIEN ATD1DIEN $008C Upper 16 Input Enable

 ATD1DIEN0 $008C Highest 8 IE (n/a)

 ATD1DIEN1 $008D Middle 8 IE

Switches and LEDs
To access the push-button switches and LEDs on the board, you need to know the following:

Port or Register Address Notes

PT1AD1 $0279 Order: RYG ULDRM

DDR1AD1 $027B HIGH = Out, LOW = In

ATD1DIEN1 $008D HIGH = Input Enabled

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 15

The code snippet below shows what needs to be done to appropriately activate the part of
PAD that’s connected to the switches and LEDs, written as a subroutine:

Notice that, since we want to directly manipulate the conditions of all eight bits in the three
registers, we use “MOVB” instead of “BSET” and “BCLR”. BSET and BCLR only affect the
bits indicated in a bit mask, leaving the other bits unchanged.

Also, notice the use of “#”, which tells the assembler to move the byte indicated into the
associated register (immediate addressing mode).

Another thing to notice is that, before we turn on the output pins in the Data Direction
Register, we initialize their values to prevent an unwanted condition when the pins become
enabled as outputs. This is a wise thing to do whenever you control any port intended to be
used as outputs. In the boot condition, all ports default to inputs, and often the default
value for each pin is SET to 1. In the case of the LEDs and many other attached circuits, we
don’t want the LEDs or other circuitry to be initially on, even for a split second. (Imagine if
the connected circuitry was the detonator for a rocket or explosive, or perhaps control for
the two transistors in a CMOS motor controller!) If you watch the memory window as you
step through the code above, you’ll notice that the value written to PT1AD1 doesn’t appear
until after DDR1AD1 is changed – the microcontroller holds the value previously written to
PT1AD1 in a buffer, and sends it out as soon as the pins are changed to outputs.

As we move through this course, we’ll need to access a variety of other peripherals. What
you have just learned about the switches and LEDs will serve as a guide to accessing and
controlling each of these.

You’ll notice that, as a microcontroller programmer, you need to know a lot about the
hardware you’re working with. That includes the microprocessor at the heart of the
microcontroller, the built-in peripherals, and the electronic interface connected to the
microcontroller. This information is typically available in Data Sheets and Schematic
Diagrams.

Due to time limitations in this course, you will typically be directed to the appropriate
information in these supporting documents. However, in real life, you will need to develop
the skills required to find, interpret, and apply the necessary information.

Each microcontroller application will be a stand-alone system, typically different from any
other system in the world. Searching the Internet will very likely not produce the answers
you’re looking for: you’re on your own! Looking at this a different way, you are the one in
control of the system you’re designing, and that can be a very empowering experience.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 16

S12XCPU Assembly Language and the S12XCPU Microprocessor Core
In a previous course, you should have been introduced to the S12XCPU Core and to
programming in S12XCPU Assembly Language. The following will be a short refresher.

Most of the pertinent information you’ll need for programming is in the “S12XCPUV1
Reference Manual”, which is for the S12XCPU microprocessor that’s at the core of our
MC9S12XDP512 microcontroller. You should download this document. Here’s the link to
access it:
http://cache.freescale.com/files/microcontrollers/doc/ref_manual/S12XCPUV1.pdf

It is also available at the Moodle site for this course. The document is over 500 pages
long, but if you want a ready reference in paper form, print Appendix A (Instruction
Reference). It contains a summary of the various instructions and of the support
documentation to help you use them.

The following is a clip from the first page of the appendix.

The S12XCPU microprocessor is a complex array of digital logic gates, arranged to follow
algorithms hard-coded into the logic. These algorithms need something to work on – that’s
where the “accumulators” and “registers” come in.

http://cache.freescale.com/files/microcontrollers/doc/ref_manual/S12XCPUV1.pdf

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 17

Although the microprocessor can perform some actions directly on memory locations (Direct
Memory Access or DMA) and performs other actions internally (“inherent” commands), the
vast majority of actions are performed on values loaded into the accumulators and registers
in the device itself. The following is a brief description of each of these.

Accumulators and Registers
Register is the general name for a latch or buffer that holds a set of bits for the
microprocessor or circuitry.

An accumulator is a special type of register that can be manipulated in a wide variety of
ways. We can use accumulators for adding, subtracting, performing bit-wise Boolean logic
operations such as ANDing, ORing, Exclusive ORing, complementing, counting up, counting
down, shifting bits left or right with a variety of options, etc.

An index register is a more limited register that can primarily be used for counting up or
counting down, and is called an “index” register because it can be used to locate addresses
in memory as referenced to a specific starting location.

The A and B accumulators are the work-horses of our microprocessor. This
microprocessor has a slight “personality disorder”: it’s not sure if it’s 8-bit or 16-bit, so
there are commands that work on 8-bit data (bytes) and commands that work on 16-bit
data (words). To accommodate this, the eight-bit A and B accumulators can be combined
into the 16-bit (i.e. “double”) D accumulator. Please do not think of the D accumulator as
being separate from the A and B accumulators! Anything you do to the D accumulator
affects the A and B accumulators, and anything you do to the A or B accumulators affects
the D accumulator. This is a limitation, but it also allows for creative manipulation of the
parts of the D accumulator, a feature you can definitely use to your advantage.

The X and Y registers are 16-bit index registers. We’ll frequently use them to point to
locations in memory. They must be loaded with 16-bit data or addresses. You will be
tempted to load them with 8-bit data, but the results will be highly unsatisfactory – you will
get 16 bits, but the other 8 bits will come from a location adjacent to the one you are
interested in, and will end up in the lower half of the register, which is probably where you
wanted your data to be. In the S12XCPU microprocessor core, the X and Y index registers
are capable of a number of operations that were not available in earlier versions, making
them much more versatile.

During the running of a program, the Program Counter Register is constantly updated to
keep the microprocessor moving through the program. Branches and jumps change the
contents of the program counter so that it carries on from a newly-determined location.

The Stack Point Register is used something like an electronic “scratch pad” by the
microprocessor. During operation, the microprocessor may temporarily store things like the
contents of the various registers in a special location called the Stack. Each newly stored
item is placed on the stack in the next available location (actually, the address just below
the last one used, since the stack is designed to grow backwards from an endpoint), and the
stack point register is adjusted to point to this new location. This is really useful when it
comes to calling subroutines or responding to interrupt routines, as the microprocessor can
quickly put the current conditions onto the stack, go off to perform a new function, then, by

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 18

“unstacking” in reverse order, can return to exactly the conditions that existed previously
and continue on as if nothing had happened. We can, and will, deliberately place things on
the stack – just remember to take them back off the stack, and in reverse order, or you will
quickly fill up the stack to a point where it interferes with memory you’re using for other
operations. This is called “stack overflow”, and usually results in very bizarre activity or a
total crash.

The Condition Code Register, or CCR, continuously reports back on events that occur
while the microprocessor is executing code. There are eight bits (flags) in the lower byte of
the CCR (CCRL), which is the part we’re interested in:

• S, X, and I – these are bits we can deliberately manipulate to control the operation
of the microprocessor. S allows the microprocessor to ignore or respond to “stop”
commands in the program, X allows it to ignore or respond to certain interrupt
requests, and I allows it to ignore or respond to a different set of interrupt requests.
Interrupts will be discussed much later.

• C and V – the Carry and Overflow bits provide us with information in the event that
some operation has produced a result that’s too big for the accumulator we’re
working with. For example, if we end up with a result that’s one bit too big (like
trying to display $13B in an eight-bit register), the Carry flag will be set and the
register will contain just the part that fits in the register ($3B in the previous
example). The Overflow bit indicates that a mathematical process involving signed
numbers has produced a result where the sign bit is probably incorrect. For
example, 100 + 100 should be +200, but in binary this is 01100100 + 01100100 =
11001000, which is –56. The Overflow bit would be set in this case.

• H – this is the Half-Carry flag. This flag is set whenever an operation results in a
carry out of the Lower nibble of the manipulated register (in other words, when the
result is greater than $F). This is, believe it or not, quite a useful feature,
particularly when it comes to doing math with Binary Coded Decimal (BCD) values.

• Z – the Zero flag is set when the result of an operation is 0.
• N – the Negative flag is set when the most significant bit in a register is 1, since, in

2’s complement notation, negative numbers always start with 1. This flag will be set
even if you aren’t intending a value to be interpreted as a 2’s complement negative.

We can, and will, deliberately manipulate bits in the CCR, but usually we use these flags as
set by the microprocessor to help us make decisions during the flow of the program. For
example, let’s consider the “DBNE” command. This command means “Decrement, and
Branch if Not Equal to zero”. If, during execution of the decrementing stage, the particular
register results in a non-zero value, the Z flag will be cleared LOW, and the program
counter will be loaded with the address of a new location in the program, to which the
operation will now “branch”; if the result is zero, the Z flag will be set HIGH and the
program will continue to the next address in sequence. (This is the machine language
equivalent of an “IF” statement.) Unfortunately, we can’t observe the action of the Z flag
for the DBNE or others of the special compound commands, as the micro restores the
original flags before it completes these types of instructions. However, you can observe the
flags when using commands such as BCS, BEQ, BNE, BLE, BMI, etc.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 19

In Appendix A of the Reference Manual and other supporting documents, you will find that
each operation uniquely controls the bits in the CCR, and we will need to pay attention to
the results. Here’s an example:

Adding Accumulators B and A could change one or more of the five flags: H, N, Z, V and C.

Memory
We also need to know the memory arrangement in the MC9S12XDP512 Microcontroller.

• The available memory on the microcontroller is somewhat limited. The
9S12XDP512, for example, only contains 32 kB of RAM – your PC at home could
easily have more than 250 000 times as much RAM.

• The address space on the microcontroller is much smaller. “Address space” is the
range of memory locations that a processor can access. The 9S12X has a 16-bit
address bus, so it is only capable of accessing 216 (65 536) memory locations
directly. This is quite small when compared to a PC that has a 32-bit address bus
capable of accessing 232 (4 294 967 296) locations. The MC9S12XDP512 has more
memory than can be accessed using the 16 bit address bus, but the extra memory is
only accessible using “paging”, in which an 8-bit register selects which piece, or
page, of memory will be accessed using the address bus.

Consequently, there is only 12 kB of the available 32 kB of RAM directly accessible,
and only 48 kB of the available 512 kB of Flash directly accessible. If you are
interested, later on in the course or for your capstone project, the “MC9S12XDP512
Data Sheet” provides information for accessing the other pages of memory.

• There is no operating system nor are there hardware abstraction layers on the
microcontroller – your code is the only code running on the device.

• The code you write for an embedded system is intended for a specific end-product
device, with fixed hardware. This means the code may be created around many
assumptions, including the assumption that ports not connected to any hardware and
internal modules don’t need to be addressed or dealt with in any way.

The huge document called the “Data Sheet” for the MC9S12XDP512 device contains
memory maps for the device. The following link is in Moodle, as well:
http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12XDP512RMV2.pdf

The “Global Memory Map” shown on the following page shows the entire memory space in
this microcontroller, much of which is only accessible using paging, as previously described.
There is an “EEPROM window”, a “4K RAM window”, and a “16K FLASH window”. These
windows are the access points for the memory selected using the paging registers. Notice
that the addresses in the “Global Memory Map” are six nibbles long – the first two nibbles
come from the paging registers, and the other four nibbles are from the 16-bit address bus.

http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12XDP512RMV2.pdf

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 20

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 1 Page 21

Unless you have good reason to do so, you’re probably wise to avoid the windowed areas of
memory and work with the unpaged regions in the “Local Memory Map”, which can be
accessed without any extra page manipulation using the 16-bit address bus.

Memory Map
The “Local Memory Map”, then, is what we will concentrate on, and contains the following
regions of interest (this list doesn’t include the paging windows):

• Chip Registers from $0000 to $07FF (2K)
• RAM from $2000 to $3FFF (8K)
• FLASH from $4000 to $7FFF (16K)
• FLASH from $C000 to $FEFF (16K minus 256 bytes)
• Vectors from $FF00 to $FFFF (256 bytes)

When you write your assembly language programs using the supplied skeleton file, you will
put your code in the fixed FLASH block at $4000, and will place working variables in RAM
($2000). You will likely put constant data in FLASH at $C000. The top of the RAM block will
be used for stack space (more on that later). This implies that our programs will typically
contain less than 16K of code, and less than 8K of combined variable and stack space. For
us, this really isn’t a limitation at all.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 22

Topic 2 –Microcontroller Programming

Required supporting materials
• This Module and any supplementary material provided by the instructor
• Device documentation provided in the appendix of this CoursePack
• CNT MC9S12XDP512 Development Kit and 12 VDC Power Adapter
• USBDM Pod or BDM Pod and “A to B” USB Cable
• CodeWarrior

Rationale
Well-structured and documented code results in dependable and maintainable systems.

Expected Outcomes
The following course outcome will be addressed by this module:
Outcome #1: Develop and debug assembly language programs using an Integrated

Development Environment (IDE).

Outcome #2: Create assembly language programs that manipulate data using operations
and expressions.

Outcome #3: Interface with onboard, simple GPIO, and programmable devices.

As this course progresses, you will refine the basic skills and understanding of embedded
systems through programming the 9S12X using S12XCPU Assembly Language and ANSI C.

Connection Activity
You have now learned enough about the 9S12X and its Assembly Language to create simple
I/O tasks. More complex tasks may require careful pre-planning, more instructions, a
clearer understanding of the ways in which address locations are accessed, and a better
understanding of the ways in which program flow can be controlled. The more complex the
software, the more careful you will need to be in structuring and documenting it. You will
discover that certain tasks are used repetitively or have the potential to be used in different
software routines – these should be stored in such a way that they can be accessed without
needing to copy or re-enter the code. A well-structured program should be easily
understood, easily operated, and easily maintained.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 23

Assembly Language Fundamentals
When programming in S12XCPU Assembly Language there are two fundamental types of
commands: Assembler Directives and Instructions.

Assembler Directives
Assembler directives are commands that control the development software on our
computer, called the Assembler. Assembler Directives do not end up in the code that the
microprocessor runs. Some of the more common Assembler Directives are:

• INCLUDE –tells the assembler to add the contents of an external file
• EQU –assigns a label to a particular address
• ORG –tells the assembler to move to an address location before continuing
• DS.B nn –defines storage space for nn Bytes (8 bits), and should be in RAM
• DS.W nn –defines storage space for nn Words (16 bits)
• DS.L nn –defines storage space for nn Longs (32 bits)
• DC.B val(s) –defines a constant Byte or Bytes (8 bits) and should be in ROM
• DC.W val(s) –defines a constant Word or Words (16 bits)
• DC.L val(s) –defines a constant Long or Longs (32 bits)

There are a lot of other Assembler Directives, which can be found in the “S12(X) Assembler
Manual” from Freescale. Here’s the link:

http://cache.freescale.com/files/soft_dev_tools/doc/ref_manual/CW_Assembler_HC12_RM.pdf

There’s also a link to this 400 page document in Moodle. It should also be available in the
lab in case you need it.

One useful feature of the S12(X) Assembler is its ability to do math on the fly. You can get
it to calculate addresses or offsets while it is creating the machine code for the CPU, which
can make your life a bit easier.

Instructions
Instructions, unlike assembler directives, are translated into machine language for the
microprocessor to carry out.

A summary of the S12XCPU Assembly Language Instruction Set can be found in Appendix A
of the Reference Manual, the link to which you’ve been given already. Let’s look at what we
can learn about a particular instruction from this guide.

To understand the instruction set, we need to look at the explanatory notes that precede it,
on pages 2 – 5 of the Guide. You’ll get to do that in the exercise that follows.

You also need to know a bit more about the terminology used in Assembly Language
programming.

Op Code – Short for Operation Code, this refers to something the microprocessor will
interpret as an instruction. Each version of each instruction will have a unique op code,
which determines what else the microprocessor needs to look at in order to carry out the
instruction.

Post Byte – Some op codes tell the microprocessor to read the next byte to get details on
the operation to be carried out. In the Instruction Set, this will be indicated in the “Machine
Coding” column as “eb”, “lb”, or “xb”, depending on the type of post byte.

http://cache.freescale.com/files/soft_dev_tools/doc/ref_manual/CW_Assembler_HC12_RM.pdf

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 24

Mnemonic – the Assembly Language Mnemonic is the pseudo-English abbreviation that
represents a particular op code or set of related op codes and their post-bytes.
Programming in Assembly Language involves getting to know the Mnemonics and figuring
out what each of the variants for that instruction does and what it needs.

Operand – Some, but not all, instructions require something to work on. This could be
actual data, it could be an address containing the necessary data, or it could be an offset
from some other point of reference.

Here’s an example from the Reference Guide: LDAA. Some pertinent points follow.

• There are eight different ways that “LDAA” can be interpreted by the Assembler. You

can think of these as “overloads” in .net terminology.
• The first and simplest of these uses the “IMM” addressing mode. This means that

the accumulator will be loaded with the contents of the address directly following the
instruction. From the first column, you will notice that this requires a “#” sign in
front of the next byte. Since A is an 8-bit register, it can only load 8-bit data.

• The source form “#opr8i” tells you that the instruction is made of a single-byte op-
code followed by an 8-bit immediate value for an operand.

• “86 ii” shows that the actual op code is $86, and “ii” means two nibbles (a byte)
immediately following the op code.

• The “EXT” mode is used to access the 8-bit value contained at a particular 16-bit
address. “opr16a” means that this version of the command has a single-byte op-
code followed by a 16-bit address. “B6 hh ll” tells you that this version of the
command has the op-code $B6, and that the address will be two high nibbles
followed by two low nibbles. This, by the way, indicates that this is a Motorola-type
device, and uses “big-endian” address formats as opposed to Intel-type devices,
which use “little-endian” addresses, read low-byte first followed by the high-byte.

• The “Access Detail” column tells you how many bus clock cycles this command takes,
one cycle per letter code, and what happens for each clock cycle (something we
usually don’t need to know much about). Remember that the bus clock is half of the
crystal frequency. Since the crystal on our board is 16 MHz, the bus clock is 8 MHz,
with a period of 125 ns. So, the “IDX2” version of this command would take four
clock cycles (“frPP”) at 125 ns per cycle for a total of 500 ns.

• The last two columns tell us what to expect in the Condition Code Register. In this
case, we should expect to see changes for the “negative” and “zero” flags, and the
“overflow” flag will always be cleared to zero.

The following should be a review of work done in a previous course, but is included here as
a reminder as to how to get started in CodeWarrior.

1. Start a project in CodeWarrior. (Typical settings shown in italics: Select the right
microcontroller – MC9S12XDP512; select the right connection pod – TBDML; select
the right core configuration – Single Core; select the right language – Absolute
assembly; enter an appropriate project name and location – Desktop–>9S12X–
>Projects.)

2. Skeleton.txt is a file that should be available in Moodle. Open and copy its contents
(Ctrl A – Ctrl C); replace the text in main.asm with these contents (Ctrl A – Ctrl V).

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 25

3. Change the information in the file header to reflect who you are and the nature of
the project.

4. Enter your code in ROM, which will be where the skeleton file says “Main:”.

Here’s a bit of code you can put into a project to practice with some of the concepts covered
to this point. You might want to determine how long “kill some time” takes, based on what
you now know about the timing of clock cycles and the size of the Y register. (You should
come up with about a 25 ms delay.)

Here’s some code that performs exactly the same function as the code above. See if you
can explain why.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 26

Rudimentary Debugging Skills
In the Debug window, across the top tool bar, you will find the following set of buttons. You
can mouse-click these or use the associated hot-keys, shown in the following table.

Button Function Hot Key

 Run F5

 Single Step F11

 Step Over (run subroutine) F10

 Step Out (exit subroutine) Shift+F11

 Assembly Step Ctrl+F11

 Halt F6

 Reset Ctrl+R

• In the Debug environment, the “Source” and “Assembly” windows show you the code

as typed by you and as interpreted by the Assembler.
• The “Data” window shows you the contents of variables and constants used in the

program. These are updated whenever the program is halted or reaches a
breakpoint.

• The “Memory” window shows the contents of any memory location, and highlights
recent changes in red.

• The “Register” window shows the contents of all of the microprocessor’s registers. A
very good troubleshooting technique is to check the contents of the registers against
what you think you’re loading into them. This will help you determine if you’ve made

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 27

an error in loading something using Immediate addressing mode (#) or Extended
addressing mode (contents of a memory location indicated by the address).

• In the “Source” window, you can right-click on a given line and set a breakpoint as a
temporary stopping point in the program, allowing you to examine the contents of
the registers, data, and memory.

• While the microprocessor’s activity is halted, you can manually change the contents
of the registers and memory, which will allow you to do “what if” scenarios or cut
down the number of cycles in a long loop by changing the value of a register that’s
being used as a counter.

Once you compile and download code to your microcontroller, it will continue to run that
code on start-up until you over-write it. You’ve burned your program into EEPROM on
board, and, until you reprogram it, it will continue to run the same instructions faithfully.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 28

Documentation and Comments
In a previous course, you used a “skeleton” file each time you started a new project. The
following is a skeleton file modified from one used by Marc Anderson at NAIT. This is a
good starting point – change the text and tabs, etc. to match your comfort zone, and save
this as a simple .txt file for future use. It may also be provided by your instructor.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 29

Using the Skeleton.txt File
1. Start a project in CodeWarrior following steps you’ve previously used. (Typical

settings shown in italics: Select the right microcontroller – MC9S12XDP512; select
the right connection pod – TBDML; select the right core configuration – Single Core;
select the right language – Absolute assembly; enter an appropriate project name
and location – Desktop–>9S12X–>Projects.)

2. Open and copy the contents of Skeleton.txt (Ctrl A – Ctrl C); replace the text in
main.asm with the copied contents (Ctrl A – Ctrl V).

3. Change the information in the file header to reflect who you are and the nature of
the project.

4. To include a library, first right-click the “Includes” in the Browser and locate the file
(should be in Desktop–>9S12X–>Libraries), then in main.asm insert an INCLUDE
Assembler directive following the commented template shown.

5. Enter your code in ROM, which will be where the skeleton file says “Main:”.
6. Declare any variables in RAM where the skeleton file indicates “Variables” using a

“DS.x nn” Assembler directive.
7. Define any constants in ROM where the skeleton file indicates “Constants” or “Look-

up Tables” or “SCI VT100 Strings” using “DC.x” and the actual constant data.
8. Put any locally-defined subroutines after the end of your main code loop, which will

automatically happen if you use the skeleton area labelled “Subroutines”.

When you write a subroutine, you should write a header that tells a programmer how to use
the routine and what to expect of it. The following is an example.
;**
;* HexToBCD *
;* *
;*Regs affected: D (A and B) *
;* *
;*A hexadecimal value arrives in Accumulator D and is converted *
;*to a 16-bit BCD, returned in D *
;* *
;*Maximum hexadecimal value allowed is $270F *
;* *
;**

From this, the programmer knows that the D Accumulator must be loaded with the
appropriate hexadecimal 16-bit word, and that, after a “JSR HexToBCD” the D Accumulator
will contain the 16-bit BCD equivalent. You should also know, as a programmer, that since
the contents of D are modified, the A and B registers will be modified by this subroutine.

You will be writing some subroutines that are specific to the task at hand – these will go in
the “main.asm” file you’re working on, usually close to the end of the code. You will also be
writing subroutines that can be used in multiple projects. These you will collect into
“libraries” of subroutines, which you will link to the main file using assembler directives.
When you write a subroutine, then, you should determine whether it could be used by other
programs and should be in a library or if it is unlikely to be used elsewhere and should
therefore just be locally-accessible.

As you write code, get in the habit of writing comments as you go. Make your comments
informative, not just a rewording of the Assembly instructions. In the following example,
the first line is not informative; the second one is.
Bad: LDAA #$E0 ;load accumulator A with hex E0

Good: LDAA #%11100000 ;ready to initialize Port AD Data Direction Register

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 30

Don’t type pages of code and then try to go back and insert comments. The comments are
there to help you keep track of what you’re doing as you are coding just as much as to help
win your instructor’s favour!

Of course, if your Main code is set up as a carefully-planned sequence of calls to well-named
subroutines (more on that later), comments would be redundant.
Start: JSR SwLED_Init
Flash: JSR Red_On
 JSR 1msDelay

JSR GrnLEDOn
JSR 1msDelay
JSR All_Off
JSR 1msDelay
BRA Flash

This kind of code wouldn’t need comments, as it is self-commenting.

As your programs become more involved, you will need to do some pre-planning, as you
would with any programming task in any language.

Some programmers are comfortable with writing pseudo-code as a guide to eventually
developing proper code. Others prefer using flow-charts. Either way, a properly planned
program will have cleaner code, will be more likely to run without errors, will be easier to
troubleshoot, and will be easier to modify if the specifications change.

The following page points out some of the pitfalls of programming without proper planning.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 31

Flowcharting

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 32

The flowcharting sequence and the clearly-recognizable blocks shown on the previous page
provide a good way for you to organize your thoughts and your code.

When you attack a programming problem, one of the first things you should do is identify
discrete tasks that need to be completed. Now, look over your list of tasks: are there any
that could be made into general subroutines for other kinds of projects? If so, these should
be written as generically as possible, for inclusion in libraries.

Consider writing your program so that the Main program is, for the most part, a sequence of
calls to subroutines. Draw your flowchart to reflect this flow of events. You can put all the
“special” subroutines (i.e. the ones not in libraries) below the Main code (well-marked and
documented, of course).

Don’t put “code snippets” into your flowchart – this should be understandable to someone
who is knowledgeable about programming but doesn’t necessarily know the language you’re
using. Instead, put descriptive terms or phrases in the program. For example, don’t say
“Carry Flag Set?” Instead, say what that carry flag means in terms of the program. It may
mean “Data Ready?” or “Counter Max’d out?”, or whatever your program is looking for.

Subroutines
Often when programming a microcontroller, you encounter pieces of code that are used in
multiple places. Rather than doing the “cut’n’paste” routine, which results in very long and
unreadable code, you can write subroutines (think “methods” in C#) which can be called
from the Main program anytime you wish.

In fact, well-structured code should have a very simple Main program that calls well-named
subroutines to do all the work. We’ll get into proper code structuring later, after spending
time writing useful subroutines. The following general pointers should help you immensely.

• A subroutine needs a unique label – use something informative, like “CheckLeftSw:”.
In this context, labels are followed by a colon.

• You must enter a subroutine using a JSR (ok, you could also use BSR, but it’s not
designed to jump more than 256 addresses from where you are, and takes no more
effort or time than a JSR, so why would you bother?).

• You must exit a subroutine using RTS.

Important Note!!! You must not use any of the “branch on decision” instructions to
enter or exit a subroutine. When you JSR into a subroutine, the microprocessor
places the return address onto the stack. When you RTS from a subroutine, the
microprocessor grabs the return address off of the stack and goes back to where it
came from. If you don’t have an RTS to match every JSR, you will mess up the
stack. You will either add more and more stuff to the stack resulting in a stack
overflow, or you will take too much stuff off the stack, straying into unknown
territory in memory. Either way, your program will crash in microseconds.

If you use an accumulator or register within the subroutine, PSH it onto the stack
before you use it, then PUL it back off the stack when you’re done with it so that it’s
back to the condition it was in before you entered the subroutine. (That is, unless
you want to use that register to return a value from the subroutine.)

Bottom line: make sure that you always unstack exactly the same number of items
as you have stacked, and in reverse order.

• If you have subroutines within the file called Main, put them all below the actual
Main program in a section clearly labelled “Subroutines”.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 33

• Make sure you have a descriptive header that explains what the subroutine does and
what registers, if any, are modified by the subroutine. This way, when you decide to
use the subroutine somewhere else, you’ll know what it expects and what it returns.

• Where possible, try to make your subroutines, particularly ones used in libraries,
broadly useful. Typically you wouldn’t put commands into a subroutine that make it
so it can only be used in one place in one program, unless it helps clarify the general
operation of the program.

• If you need to change a subroutine, particularly one in a library, make sure the
changes are backwards compatible so that previous programs that use these
subroutines will still operate. If there is no way of keeping a subroutine backwards
compatible, create a new subroutine with a different name for use in subsequent
programs.

• In the context we’ve chosen for development (Absolute Assembly), you only have
access to global variables. Where possible, try to make your subroutines work
without using variables so that they are more portable. If you must use a variable or
constant, make sure you put a note in the header reminding yourself or someone
else using your subroutine that the variable or constant needs to be declared in the
Main program.

Libraries of Subroutines
As previously mentioned, some subroutines should be made available so they can be used
by other programs. These library files are simply text files containing the subroutines you
want to include in them. The Assembler/Linker is designed to include any libraries you want
to attach to your main code when you Run/Debug your program. Please note that
everything in the library gets added into your assembled code, so you might want to plan
your libraries so as to keep the amount of unused code in your assembled code to a
reasonable amount.

As previously mentioned, you need to do the following two things to include a library file:

• Add the library to the “includes” folder in the Project window (right-click the folder
and add the file when prompted).

• Put an “INCLUDE” Assembler directive after your code, so that the included
subroutines will appear at the end of your code in ROM.

If you use the Skeleton file mentioned earlier, it has a pre-defined block for these INCLUDE
statements.

One way to create a library is within the context of a Main program. Write all your
subroutines below the Main program, as usual. After you have tested each of them and are
convinced they do what you want them to do, move the subroutines into a separate text file
and create an informative comment block at the top – it should list each of the subroutines
contained in the library – and save the result as a “.inc” file. It’s that easy!

Alternatively, you can start a new “.inc” file, and build it up alongside a “main.asm” file that
checks each routine as you build it. You’ll need to make the appropriate “includes” to make
this work. This author recommends this method, because it reduces the number of
surprises you might experience.

The more difficult part is deciding what you want to have in a library. You should collect
together subroutines that are related, and are therefore likely to be used for a particular
type of program. For example, you will be doing a lot of work with the Serial
Communication Interface (SCI). It would make sense to have routines that send and

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 34

receive characters through the SCI in the same library. It doesn’t make sense to have
routines that turn on the LEDs in that library.

Assembly language libraries suited to the content of this course would include the following:
SwLED_Lib.inc
Misc_Lib.inc
SevSeg_Lib.inc
LCD_Lib.inc
SCI0_Lib.inc
PWM_Lib.inc
ATD0_Lib.inc
IIC0_Lib.inc

The focus of this course will shift to ANSI C programming before all of the material in this
list of libraries has been covered, so you will likely not be required to create all of these
libraries yourself. However, your instructor may provide you with these and other libraries
as seems appropriate.

Misc_Lib.inc will contain routines that could be used in a number of types of programs –
things like HexToAsc, HexToBCD, etc.

If you haven’t already done so, you should develop a useful file structure for your work, like
the following:

Create this file structure, and simply copy the entire thing back and forth between the
desktop of the computer you’re working on and your file storage device.

You should probably store your skeleton file in the “9S12X” directory so you can access it
every time you start a project.

During the creation of a new project, the CodeWarrior IDE will create the folder for that
project and will build all the associated subfolders and files inside the project folder.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 35

S12XCPU Addressing Modes
Addressing modes define what memory the instruction will operate on. Each instruction
offers one or more addressing modes. The S12XCPU offers some very complex addressing
modes, and we will not look at all of them. Some addressing modes lend themselves well to
compiler output, so as humans, we aren’t suitable candidates for their use.

The assembler selects the addressing mode, where appropriate, from the form of the source
instruction. The text form of the instruction entered into the assembler is ultimately
rendered into machine code – that which the CPU understands. Common omissions or
‘trivial’ mistakes in code entry can lead to incorrect values or incorrect addressing modes in
machine code.

Inherent - INH
The simplest of all addressing modes is inherent (INH). Inherent instructions require no
additional information to operate.

The following code snippet contains a number of Inherent commands. Notice how the
Assembler interprets each – no reference to memory addresses.

Immediate - IMM
The immediate addressing mode contains the required operands in the object code,
meaning the required information is constant, user-defined, and part of the instruction.

To indicate the immediate addressing mode, these instructions must use a pound sign on
the operand. This will differentiate the immediate form from the extended form, which we
will look at next.

The following code snippet contains a number of commands in Immediate Addressing mode.
Notice how the Assembler interprets each command, and what it will work on.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 36

Extended – EXT
The extended addressing mode requires a 16-bit address. The byte(s) at this address are
used by the instruction. What happens to the byte(s) depends on the instruction.

The assembly language form for extended addressing requires no decoration, just anything
that can be bent into an address:

We can use labels to define constants (in ROM) and variables (in RAM), then we can use
various addressing modes, like “EXT”, to access these. Here’s an example.
 ORG $2000 ;start of RAM
Counter: DS.B 1 ;one byte assigned as variable Counter
 ORG $4000 ;start of FLASH for program
 MOVB #$5A,Counter ;place initial value into Counter

Direct – DIR
The direct addressing mode is used to operate on memory locations 0x0000 – 0x00FF.
Syntactically this form is identical to extended, except this form requires one less byte of
code, as the high byte of the address is assumed to be $00. This addressing mode is useful
when RAM is available in the first 256 bytes of the memory map, as it provides fast access
for variables. Sadly, for the S12XCPU as configured in the 9S12XDP512, there is not a lot
of call for direct addressing, since the “first page” of memory contains the microcontroller’s
internal peripheral module registers. The assembler will automatically detect and
implement direct addressing instead of extended if the instruction supports it.

Relative – REL
The relative addressing mode is used principally in branching instructions. The S12XCPU
supports long and short branching. The operand(s) in a branch instruction form a signed
offset that participates in forming a new address for the program counter – in other words,
the program execution moves to a new point, or branches away. The target address is
found by adding the relative offset in the operand(s) to the address following the first
(maybe only) offset operand. One of the things you should appreciate about the assembler
is its ability to calculate relative offsets for you. You put in labels, it does the math.

Note: Some instructions like BRSET and BRCLR don’t show the addressing mode as REL
because they are performing two commands: a compare and a branch. However, they are
using relative addressing, so you won’t be able to use these commands to move more than
–128 or +127 counts of the program counter from where you’re at. This can be a serious
limitation, and will probably catch you off guard: you’ll have a program that’s working

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 37

perfectly, then you’ll add in a bit of code between one of these commands and its target.
Suddenly, you’ll get an “out of range” error, with no simple way of solving the problem.

The simple branching commands have a “long branch” option. By putting an “L” in front of
the mnemonic, its range becomes –32,768 to +32,767. This isn’t available for the complex
instructions.

In the code snippet below, by comparing the “Source” window to the “Assembly” window,
you can see how the Assembler has interpreted each of these instructions using Relative
addressing. Take some time to get to know what the offsets are and how they are
displayed in the disassembled code, in the comments, and in the machine code. Some of
these are discussed below.

Look at the “bra *” line. As written, this means we want the code to branch back to the
beginning of the current line. In the disassembled code, this shows up as “BRA *+0x0”,
which again means the intent is to branch 0 positions from the beginning of this line. In the
comments for the disassembled code, the absolute address is given as “0x4005”, which, as
you can see, is the beginning address of this particular line of code. The most important
part, though, is to understand the machine code: “20FE”. “20” means a short branch
always. “FE”, though, is –2, and tells the microprocessor to subtract 2 from the current
program counter. Since the program counter will have advanced by 2 while executing this
command to address $4007, it will be moved back to $4005, where it will execute the
command again ad infinitum.

Briefly look at the difference between the “bra *” line and the “lbra *” line. In this case,
you’ll notice that the relative offset is four nibbles: $FFFC, or -4, to cover the extra bytes
required in this longer version of the command.

Look at the “brset $4000,#1,forever” line. In this command, if the LSB of the value in
address location $4000 is set (the mask “#1” is the same as #%00000001), the program
counter is supposed to go back to “forever”, which is address $4007. (Incidentally, address
$4000 contains $CF as seen in the program listing, so the branching condition will be
TRUE.) Notice what the machine code says: “1E400001F9”. “1E” is the op code for BRSET.
“4000” is the address we want to check the contents of. “01” is the mask we’re comparing
against. And now for the offset: “F9” is only 8-bit, so we can only do short branches with
this command. “F9” is –7, which takes the program counter back from $400E where it’s
sitting to $4007, the address of “forever”.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 38

Indexed – IDx, IDx1, IDx2, [IDx2], [D,IDx]
The S12XCPU chip has several forms of indexed addressing. The simplest form of indexed
addressing uses X,Y,SP or PC (“x” in the form above) as a pointer. To this pointer (the
value in the register) an offset is added. The offset is either a 5-bit signed offset (IDx),
9-bit signed offset (IDx1), 16-bit signed offset (IDx2), or the contents of accumulators A, B,
or D. The assembler will automatically select the correct form of the instruction, as long as
what you enter can be bashed into a valid instruction:

The indexed-indirect addressing mode ([IDx2] and [D,IDx])allows either a 16-bit or D
offset from X,Y,SP, or PC. In this mode the address formed from the offset is used as
another address. The action of the instruction is on the target of this address:

NOTE: You can live a long, happy life not using most of the indexed addressing modes.
However, they’re there if you need them.

The indexing modes also offer pre/post increment/decrement options for the indexed
addressing modes. These are typically leveraged by compilers, but you are free to look up
their operation, should you feel ambitious.

You should get to know the direct indexing modes (no square brackets) very well. Here’s a
bit of practice.

 LDX #Table
 LDAA 2,X
 BRA *
 ORG $C000
Table: DC.B $1E, $B6, $2F, $5A

After this code has run, X = $C000, and A = $2F. Make sure you can explain why before
moving on.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 39

Frequently-Used Instructions
In the Reference Guide, you will find a listing of all the possible instructions (the “Instruction
Set”) for the S12XCPU. You should look through this entire list to see what sorts of things
you can do with this device.

Here are a few of the ones you will probably use extensively. As you go through this list,
remember that references to “memory location” could refer to the byte or word directly
following the Op Code (IMM mode) or a memory location elsewhere, accessed using any of
the other addressing modes.

LDAA, LDAB, and LDx – (where x could be D, X, Y, or S) puts the contents of a memory
location into the selected accumulator or register. Remember that 8-bit registers will load a
single byte and 16-bit registers will load two bytes – always the one you point to and the
one immediately following it – in order to get the full 16 bits.

STAA, STAB, and STx – (where x could be D, X, Y, or S) puts the contents of the selected
accumulator or register into a memory location. Again, remember that 8-bit registers will
store a single byte into the location you’re pointing to, and 16-bit registers will store two
bytes – one into the location you’re pointing to and one into the one following it. If you
forget this, you’re in for a big surprise when you over-write a byte you didn’t think you were
going to affect.

CLR, CLRA, and CLRB – all bits cleared in the selected accumulator or memory location.

DEC, DECA, DECB, DEx – (where x can be S, X, or Y) subtracts one from a memory
location or register.

INC, INCA, INCB, INx – (where x can be S, X, or Y) adds one to a memory location or
register.

BCC and BCS – branch to a specified location, based on the condition of the Carry flag

BEQ and BNE – branch based on the condition of the Zero flag

BGE, BGT, BLE, BPL, BMI, and BLT – branching decisions based on the comparison of
signed numbers.

BHI, BLO, BHS, and BLS – branching decisions based on the comparison of unsigned
numbers.

DBEQ and DBNE – compound instructions that decrement a register or memory location,
then make a decision based on whether or not the result is zero.

ADDx and ADCx – (where x could be A, B, or D) these add the contents of a memory
location to the contents of the selected accumulator. If you use the “ADC” version,
whatever is in the Carry flag of the CCR (0 or 1) will also be added in.

SUBx – (where x could be A, B, or D) subtracts the contents of a memory location from the
contents of the selected accumulator.

MUL – multiplies A by B and dumps the result in D.

There are five different division routines: FDIV, EDIV, EDIVS, IDIV, and IDIVS. These
are somewhat complicated to use, and will be explained when you need them.

ANDA and ANDB – these perform a bit-wise AND between the contents of the specified
accumulator and the contents of a memory location (more later when we discuss masks).

ORAA and ORAB – these commands perform a bit-wise OR between the contents of the
accumulator and the contents of a memory location.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 40

EORA and EORB – performs a bit-wise Exclusive OR (XOR) between the accumulator and
the contents of a memory location.

COM, COMA, and COMB – performs a 1’s complement inversion of each bit.

NEG, NEGA, and NEGB – performs a 2’s complement of the target value.

BITA and BITB – (bit test) performs an “AND” operation between the accumulator and the
memory location, but doesn’t affect the contents of either – only the Condition Code register
is affected.

CBA – compares the A and B accumulators by subtracting B from A, and modifies the
Condition Code Register accordingly – used to determine which is greater.

CMPA, CMPB, CPx – (where x can be D, S, X, or Y) compares the selected register to
memory by subtracting the contents of memory from the register, but doesn’t change
anything except the CCR.

LSL and LSLx – (where x could be A, B, or D) performs a logical shift left, bringing in a “0”
at the lowest bit and spitting the highest bit into the Carry flag of the CCR.

LSR and LSRx – (where x could be A, B, or D) performs a logical shift right, bringing in a
“0” at the highest bit and spitting the lowest bit into the Carry flag.

ROL, ROLA, and ROLB – just like LSL, except that the contents of the Carry flag are
brought in to the lowest bit instead of “0”. Watch this command: it rolls 9 bits, not 8.

ROR, RORA, and RORB – just like LSR, except that the contents of the Carry flag are
brought in to the highest bit. Again, this rolls 9 bits, not 8.

BCLR – clears bits (ensures that bits are “0”) according to which bits are set in a mask.
Other bits remain unchanged. This involves ANDing the bitwise complement of the mask.

BSET – sets bits (ensures that bits are “1”) according to which bits are set in a mask.
Other bits remain unchanged. This involves ORing the mask.

CLC – clears the Carry flag in the CCR.

CLI – clears the Interrupt bit in the CCR, thereby enabling interrupts.

EXG, XGDX, and XGDY – swaps the contents of two registers. Things get messy if you
swap the contents of 8-bit and 16-bit registers!

TFR, TAB, TBA, TAP, TPA, TSX, TXS, TSY, and TYS – moves the contents of one register
into another without changing the first register’s contents. Again, transferring the contents
from an 8-bit register to a 16-bit or vice versa can produce unexpected results!

MOVB and MOVW – moves a byte (8-bit) or a word (16-bit) from one memory location to
another. Frequently used in IMM/EXT mode, (e.g. MOVB #$3E,Table+1) this can also be
used in EXT/EXT mode (e.g. MOVB Counter,Display) or various indexed (IDX) modes. Note:
Don’t confuse the “B” for “byte” in MOVB with Accumulator B!

PSHx and PULx – (where x could be A, B, C (for CCR), D, X, or Y) places an item on the
stack or takes it back off the stack, allowing you to use the stack as temporary storage.

JSR and RTS – jump to a subroutine and return from a subroutine. Be careful with these –
they automatically involve placing the Program Counter (16-bit) on the stack and pulling it
back off. If you follow a JSR with a branching statement instead of an RTS, you will quickly
experience the pain of a stack overflow. Every JSR must have an RTS.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 41

Masks and Bitwise Boolean Logic
Many of the instructions for the S12XCPU involve masks. A mask is an 8-bit or 16-bit
binary pattern used to select individual bits in a register or memory location. In its original
sense, the pattern “masked out” bits that weren’t needed or wanted for a particular
operation, leaving the significant ones “visible”. We now use the term more generally for
any pattern that allows us to operate on individual bits instead of the whole byte or word.

The various bitwise actions are as follows:

• SET the selected bits (i.e. make these bits HIGH, or logic 1).
• CLEAR the selected bits (i.e. make these bits LOW, or logic 0).
• TOGGLE the selected bits (i.e. LOW becomes HIGH, HIGH becomes LOW).
• BRANCH if the selected bit or bits is LOW.
• BRANCH if the selected bit or bits is HIGH.

It’s important to distinguish between instructions or actions that affect an entire register or
memory location and those that act on individual bits.

Commands affecting an entire register or memory location
LDAA/LDAB/LDD/LDX/LDY The register contents are replaced by the incoming data.

 e.g. LDAA #%10100011 ;A ends up containing 10100011

STAA/STAB/STD/STX/STY The memory contents are replaced by the outgoing data.

 e.g. STAA Counter ;Counter ends up containing the contents of A

MOVB/MOVW The memory contents are replaced by the indicated data.

 e.g. MOVB #$F2,Counter ;Counter ends up containing F2.

CLRA/CLRB/CLR Each bit in the register or memory location is cleared to 0.

 e.g. CLR Counter ;Counter ends up containing 00.

COMA/COMB/COM Each bit in the register or memory location is toggled (complemented).

 e.g. LDAA #%01011010
 COMA ;A ends up containing 10100101

Commands affecting selected bits
ORAA/ORAB 1s in the mask SET the corresponding register bits; 0s have no effect.

 e.g. LDAA #%01011010
 ORAA #%11000000 ;A ends up containing 11011010

ANDA/ANDB 0s in the mask CLEAR the corresponding register bits; 1s have no effect.

 e.g. LDAA #%01011010
 ANDA #%11100111 ;A ends up containing 01000010

BSET 1s in the mask SET the corresponding bits in memory; 0s have no effect.

 e.g. MOVB #%01100010,Counter
 BSET Counter,%11000000 ;Counter ends up with 11100010

BCLR 1s in the mask CLEAR the corresponding bits in memory; 0s have no effect. This is
essentially the same as ANDing with the complement of the mask.

 e.g. MOVB #%01100010,Counter
 BCLR Counter,%11000000 ;Counter ends up with 00100010

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 42

Commands responding to selected bits
BRSET If, in a memory location, a bit or all of the bits selected by 1s in the mask are HIGH,
program execution will branch to the indicated address. The most straightforward way to
use BRSET is in response to a single bit.

 e.g. BRSET PT1AD1,%00010000,UpSw ;Branches if the Up switch is pressed

BRCLR If, in a memory location, a bit or all of the bits selected by 1s in the mask are LOW,
program execution will branch to the indicated address. Again, this is easiest to use in
response to the condition of a single bit.

 e.g. BRCLR PT1AD1,%00010000,NotUp ;Branches if the Up switch is not pressed

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 43

Using Variables and Constants
As you code more complicated tasks, you will find it increasingly difficult to juggle the few
CPU registers you have to work with. The use of RAM-based variables is an easy sell, and
will help you with code management when there are multiple states to manage.

Variables need to be stored in RAM, or they won’t be variable. Variables are created within
ORG sections that place the program counter in RAM. The skeleton file you’re working with
has a header to show you where you should place your variables, which will be after an
“ORG” that places the variables in RAM.

Variables are defined with a DS (Define Space) directive. There are three forms of the DS
directive:

• DS.B reserve space for bytes (8-bits)

• DS.W reserve space for words (16-bits)

• DS.L reserve space for longs (32-bits)

The DS.x directive is followed by a count that indicates the number of elements to reserve.
This number must range from 1 to 4096. The count is multiplied by the size of the type to
determine the number of bytes that will be reserved for storage.

Reserved space is not initialized, and will typically contain garbage. It is your responsibility
to initialize all reserved space if your code requires it.

You will usually include a label for each DS directive, although it’s not required. The label
and reserved space together are loosely referred to as a ‘variable’.

NOTE: You’ve been told this before, but it doesn’t hurt to say this again: Your library
subroutines may use variables internally, but because of the layout of the projects we are
creating, the variables must be created in the main program file. Use of variables in a
subroutine in a library will require that you clearly document the required variable names
and initial values in the subroutine block.

Constants are not something intended to change as the program runs. Consequently, they
should be in ROM. For ease of debugging, we’ll use the address space starting at $C000.

Constants are defined with a DC (Define Constant) directive. There are three forms of the
DC directive:

• DC.B byte-sized constants (8-bits)

• DC.W word-sized constants (16-bits)

• DC.L long constants (32-bits)

Since the data is constant, it must be defined at the time of assembly. Therefore, the DC
command is followed by the data to be defined.

A typical application would be to store string data, as shown in the following example:

Name: DC.B “P. Ross Taylor”,0

This will create a 15-byte field with an ASCII character in each byte (the last one is NULL),
where the address indicated by “Name” will be the address of the character “P”.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 44

Here are some important things to keep in mind when using variables and constants in your
code.

1. The Assembler interprets your assignment of a constant or variable label as a 16-bit
address, and will replace subsequent references to that label with the 16-bit address.

2. Storing a single byte into a multi-byte variable changes only the first byte.
3. Storing a 16-bit value to a single-byte variable will change the contents of that

address and the address following it. If that address is another variable, you will
have over-written its contents (affectionately known as clobbering the next variable).

4. Storing to a constant in ROM changes nothing – why else would we call it a
“constant”?

5. Calling something in RAM “constant” is a lie – don’t do it! You could be fooled when
debugging your program, as the Assembler will populate that location when you
download your code. However, when you turn off the micro board, that information
will be lost forever, and the code won’t run properly the next time.

6. The Assembler lets you enter bytes into a constant or variable using a lot of different
formats. For example:
Str: dc.b $48,’i’,$64,”den”,$20,”Me”,%01110011,115,$60+1,’g’,$67-2

…will contain the ASCII characters “Hidden Message”. See if you can determine how
each of the characters is interpreted from what is given by the Assembler. You may
find some of these techniques useful. For instance:

• Putting an ASCII character in single quotes (‘i’) tells the Assembler to treat
this as an ASCII character.

• Putting multiple ASCII characters in double quotes (“den”) tells the Assembler
to put each of the ASCII characters into sequential address locations.

• Characters can be entered in binary, decimal, hexadecimal, or even octal
form.

• The Assembler will even do calculations “on the fly” to arrive at a value to
store in an address location.

7. The X and Y registers are called “index registers” because you can use them as
pointers to the beginning of a memory space (like a multi-byte constant or variable).

8. Use a pound sign (#) to load the address of a variable or constant into a 16-bit
register, usually (but not exclusively) an index register (X or Y).

9. You can find a byte at a particular offset from the address contained in an index
register. This is done using Indexed Addressing Mode, for example
LDX #Str ;X now points to the first address of Str
LDAA 2,X ;A now holds the third char in Str (zero based)

10. The index registers can point to any memory location (not just the start of a
variable), so you can crawl through a multi-byte variable or constant using INX or
INY.
INX ;following the above code, X points to Str+1

11. You can’t load an address into an 8-bit register. You will only get half of the address,
and certainly not the contents of that address, so trying to work with that will
produce really bizarre results. So don’t try LDAA #Str – it won’t work.

12. If you don’t use a pound sign, you will load the contents of the memory location
represented by the variable. If you load an 8-bit register, you will get the single
byte from that memory location (LDAA Str puts ‘H’ into A in our previous example).
If you load a 16-bit register, you will get two bytes: the one you pointed to and the
one following it. (LDD Str puts ‘H’ into A and ‘i’ into B in our previous example).

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 45

Programming in C
Every time you’ve started a new project, you’ve unchecked “C” and checked “Absolute
Assembly” instead. You probably don’t even think about it anymore; but what if ….

C is a much older language than the C# you’ve been working with. However, although
Microsoft has tried to cloak the basics in Orwellian doublethink, you will probably find that
there are some transferable concepts, fundamental operations, and syntax similarities that
will make learning C for the 9S12X fairly easy. Unless your instructor has chosen to
approach the order of this course differently, you should, at this point, have learned the
fundamentals of programming in S12XCPU Assembly Language, which is tightly linked to an
understanding of the operation of the microprocessor and its peripherals. Programming in C
also requires a clear understanding of the operation of the microcontroller, particularly its
registers; however, the C cross-compiler used by Code Warrior is capable of handling many
things itself so you don’t have to worry about all the details.

The following pages show how to start a C project, how to write and run simple code, how
to write and use “Functions” (these are what C# architects decided to refer to as
“Methods”), and how to write, include, and use uncompiled code libraries.

Setting Up an ANSI C Project
Start a new project, following the steps below:

1. Follow the usual steps to start a new project, including selecting the appropriate
derivative of the 9S12X, the BDM interface you’re using, and “Single Core”.

2. Leave the “C” box checked, set the appropriate “Location” (your Projects folder), and
give your project a name. Don’t hit “Finish”, as there are more screens coming.

3. When you get to the “C/C++ Options” page in the Wizard Map, select “ANSI startup
code” and the “Small” memory model. If your program doesn’t have to do anything
mathematical, leave floating point format as “None”. If, however, you want to do
floating point math (i.e. fractional values) instead of just working with integers (not
to be confused with int declarations), you should probably check “float is IEEE32,
double is IEEE32”. (This option will consume a lot more memory when generating
code and will run more slowly, but you probably won’t run out of room. Timing
might be more of an issue.) Now you can click “Finish”.

4. Open the “main.c” program. It will contain some basic code (a bit less annoying

than the code they inserted in “main.asm”, but still not entirely useful. Instead,
create a “skel_C.txt” file like the one on the following page, replace the text in
“main.c” with it, and tidy up the header information.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 46

ANSI C Skeleton File

There are a number of ways to create an endless loop in ANSI C, including while(1){code}.
However, we’ve chosen to use the endless for (;;){code} loop as shown in the skeleton file
above because it doesn’t generate any compiler warnings.

Notice that Variables and Lookups appear to be in the same memory space, which would
have to be in RAM. However, in ANSI C, both of these can be initialized or pre-loaded,
which means their values would somehow have to be in ROM. In reality, the C compiler will
store the initialization values in ROM, and will create a working copy in RAM on start-up so
that the values can subsequently be changed under programmatic control. (The same can
be done when programming in S12XCPU Assembly Language, but the process has to be
written into the program, and is therefore much more involved.)

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 47

Switches and LEDs with ANSI C
Since you’ve already gained some experience working with the push-button switches and
the LEDs connected to PT1AD1 of your microcontroller, this makes a good jumping point
into writing programs in ANSI C.

In order to initialize PT1AD1, you need to set the LED-connected pins to OUTPUTS, set the
Switch-connected pins to INPUTS, and digitally-enable the switch-connected pins. You
probably also want to initialize the conditions of the LEDs to ALL OFF. Here’s a bit of ANSI C
code that performs these operations:

Notice that we can overwrite all eight bits in a register using the “=” operator. In the
example above, the values have been entered as binary values, because that makes the
best sense for bitwise operations. However, the first command could have been
“DDR1AD1=0xE0” for hexadecimal or “DDR1AD1=0340” for octal or “DDR1AD1=224” for
decimal – all of these options would have made the LED pins outputs and the Switch pins
inputs. The cross-compiler is smart enough to convert any numeric representation into
binary for the microcontroller, so pick the format that makes the most sense to you as a
human-programmer. There are times when the decimal representation of a number makes
most sense. For example, “NewDozen +=12” probably makes more sense to you than
“NewDozen+=0b00001100”, “NewDozen+=0x0C” or “NewDozen+=014”.

If we only want to change some of the bits, we use bitwise operations like “&”, “|”, or”^”
(AND, OR, or EOR). In the case above, we wanted to turn off the LEDs, so ANDing with 0
performs that function, whereas ANDing with 1 has no effect. If we wanted to turn on or
set particular bits, we would OR the desired bits in the register with 1s, whereas ORing the
other bits with 0 has no effect.

Functions
In ANSI C, a Function (a.k.a. Subroutine or Method in other languages) requires a
“Prototype” or “Declaration”, defined prior to the execution of any code. The prototype
declares the type of what is returned from the function and the types of any parameters
passed to the function. Although you can choose the variable names for parameters passed
to the function in the prototype, this is not necessary. The prototype often looks like the
first line in the actual function, just terminated with a semicolon. The following are some
examples:

void SwLED_Init(void);

char SwCk(void);

void LEDOut(char LEDs);

void LEDOut2(char);

unsigned int TwoNumSum(unsigned char X, unsigned char Y);

The skeleton file provided has a section at the top for you to put your prototypes.

The function itself starts with a header much like the prototype, but with the variable names
that will actually be used in the function, if these were not specified in the prototype. The
“definition” of the function is contained between curly brackets {} (affectionately referred to
as “chicken lips” in NAIT’s CNT department).

If a value is to be returned from the function, a “return <value>” statement is required.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 48

Libraries of Functions
As with your work with S12XCPU Assembly Language, you can create libraries of commonly-
used functions. However, the process is quite different.

To begin with, you will need two files for each library: a header file (.h) and an uncompiled
code library (.c). The header file contains all of the prototypes for the functions, with the
definitions (actual code) appearing in the uncompiled code library.

When you create a new project, you will need to do three things:

• Include the “.c” file in the “Sources” section of the project browser window.
• Include the “.h” file in the “Includes” section.
• Add an #include “libname.h” line to the “Library includes” section of the skeleton.

The “.c” file itself needs to start with “include” statements. Here’s a screen-shot of the
beginning of this author’s “SwLED_Lib.c” library:

Notice the different punctuation: the <hidef.h> reference is to one of the standard ANSI C
compiled libraries, whereas the libraries in quotes are uncompiled libraries. The
“derivative.h” file points to the “mc9s12xdp512.h” file that contains all the definitions of the
labels for the registers in the version of the 9S12 we’re using.

You will be required to write a library to match the contents of the following “SwLED_Lib.h”
header file:

In the functions that accept a colour parameter, you will need to pass the value as an ASCII
character, which requires the use of single quotes: e.g. ‘R’.

To begin with, you won’t need to build the “Sw_Ck()” function, as you need to learn a bit
more about switch management before you can deal with that one.

Summary
You have now been provided with a bare minimum of what it takes to program in ANSI C.
With your experience with other programming languages, particularly C#, you should be
able to play around with ANSI C quite productively, and you will learn more of what the
language looks like and what it can do as this course progresses.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 49

Numeric Manipulation
A review of bit basics is prudent at this point, as an understanding of binary and
hexadecimal will be assumed throughout the rest of this course.

Understanding Base 10
Base 10, or decimal, is a good radix to begin with, as you are familiar with it. We know that
each digit contributes the digit value * 10n, where n is the zero-based index of the digit,
working right to left. Consider the number 34389510:

Digit 310 410 310 810 910 510

Position Value 105 104 103 102 101 100

Digit Value 30000010 4000010 300010 80010 9010 510

34389510 = 30000010 + 4000010 + 300010 + 80010 + 9010 + 510

34389510 = 34389510

This pattern seems obvious for base 10, but works for base 2 (binary) and base 16
(hexadecimal) as well.

Converting Binary to Decimal
In binary the number is valued as the sum of each digit * 2n, where n is the zero-based
index of the digit, working right to left. Consider the number 1001012:

Digit 12 02 02 12 02 12

Position Value 25 24 23 22 21 20

Digit Value 3210 010 010 410 010 110

1001012 = 3210 + 410 + 110

1001012 = 3710

The system shown above is called “Weighted Sum of Powers”.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 50

Converting Hexadecimal to Decimal
Hexadecimal is no different, other than including A-F as digits to allow each hex digit to
represent one of 16 different values.

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Consider the number 3D5F2A16, converted as shown below using weighted sum of powers:

Digit 316 D16 516 F16 216 A16

Position Value 165 164 163 162 161 160

Digit Value 314572810 85196810 2048010 384010 3210 1010

3D5F2A16 = 314572810 + 85196810 + 2048010 + 384010 + 3210 + 1010

3D5F2A16 = 402205810

Converting Hexadecimal to Binary
Converting hex numbers to binary and vice versa is nice and easy, as each hex digit can be
converted to a nibble. You may use the lookup table above, or your brain, to do the
conversion. Using this technology, the hex number above (3D5F2A16) could easily be
converted to binary. Always remember to work right to left, and strip any leading zeros on
the result (unless you want to show a specified number of bits in your result, regardless of
what they are):

Hex 316 D16 516 F16 216 A16

Binary 0011 1101 0101 1111 0010 1010

3D5F2A16 = 0011110101011111001010102

or

3D5F2A16 = 11110101011111001010102

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 51

Converting Binary to Hexadecimal
Converting binary to hex requires that you work right to left ‘snapping’ the binary digits into
nibbles, padding the left-most digits with zeros to fill the final nibble, if necessary.

For example, convert 11010100101010110101112 to hexadecimal:

Binary 11010100101010110101112

Nibbler 0011 0101 0010 1010 1101 0111

Hexadecimal 316 516 216 A16 D16 716

11010100101010110101112 = 352AD716

8 Bit Arithmetic
You will principally be concerned with 8 bit numbers while coding. Mastery of all that is
8 bit needs to become part of your mental fabric – stat. Typically when you look at a binary
or hexadecimal number, you assume it is unsigned. The fact that binary and hexadecimal
numbers have no sign notation for ‘negative’ contributes to this. There are times when
numbers need to be interpreted as signed, and binary numbers may be 2’s complement
coded to manage a signed value. Please note, before we get too far here, that there is no
way to determine if a binary number is intended to be signed or unsigned – it is entirely up
to context and interpretation. The S12XCPU has instructions that will assume that an
operand is signed, and will interpret the binary number that way. These instructions are
fairly clearly marked.

Binary numbers that are interpreted as being signed consider the most significant bit as
contributing a negative value. This means that for an 8 bit number, the most significant bit
will contribute -128 (-27), if it is set:

Bit Pattern Hex Value Unsigned Decimal
Value

Signed Decimal
Value

%00000000 $00 0 0

%10000000 $80 128 -128

%11111111 $FF 255 -1

%01111111 $7F 127 127

From this, we can glean a couple of important points:

• Representation of –0 is not possible

• The MSB directly represents the sign of the number (but not as a fundamental flag)

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 2 Page 52

Working with 2’s Complement
To code a number as 2’s complement, you take the 1’s complement and add 1.

NOTE: You only code negative numbers in 2’s complement – if a number is positive and fits
the signed range, then you need do nothing.

Consider the number –9410. First, determine the binary representation of the number:

94 %01011110

Next, take the 1’s complement: %10100001

Add 1 %10100001

+% 1

 %10100010

- OR -

94 %01011110

Start at the right and copy bits until you
encounter a 1, then invert the rest:

 %10100010

2’s complement is used to resolve subtraction with addition. You use 2’s complement form
to effectively flip a negative sign to a positive sign. This only has an effect on negative
numbers. For example, consider the problem of 15 – 6:
15 = $F = %00001111

 6 = $6 = %00000110

Because it’s negative, convert the 6 to 2’s complement, then add to the 15:
 %00000110 ($06)
 %11111010 ($FA)

 %00001111 +
 %11111010

%100001001 (discard overflow = $9)

So… 15 – 6 = 9 apparently…

If you were to try a problem like 6 – 15, you would find that the 15 needs to be converted
to 2’s complement, followed by addition:
 %00001111 ($0F)
 %11110001 ($F1)

 %00000110 +
 %11110001

 %11110111 (bit 7 set, so negative; take 2’s complement to get the value)
 %00001001 (answer is –9)

So… 6 – 15 = –9…

This, of course, would work exactly the same way if the problem was –15 + 6.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 53

Topic 3 –Interfacing With Internal and External Devices

Required supporting materials
• This Module and any supplementary material provided by the instructor
• Device documentation provided in the appendix of this CoursePack
• CNT MC9S12XDP512 Development Kit and 12 VDC Power Adapter
• USBDM Pod or BDM Pod and “A to B” USB Cable
• CodeWarrior

Rationale
Well-structured and documented code results in dependable and maintainable systems.

Expected Outcomes
The following course outcome will be addressed by this module:
Outcome #3: Interface with onboard, simple GPIO, and programmable devices.

As this course progresses, you will refine the basic skills and understanding of embedded
systems through programming the 9S12X using ANSI C.

Connection Activity
Some devices are relatively easy to access or control. These devices require no internal
programming, and often only require communication in one direction with no feedback.
You’ve already read from a bank of switches and written to three LEDs. Another device on
your board, the ICM7218 LED Display Driver, is similar in that it receives simple instructions
through a GPIO port, and provides no feedback to the microcontroller.

Many microcontroller devices need, at some point, to send meaningful information to a
computer or other communications-enabled device and/or receive meaningful information
from such a device. This kind of activity often uses Asynchronous Serial Communication.

Microprocessors can manage a large number of devices and can transfer a large amount of
data quickly because they use parallel communication arrangements. Consequently, many
devices – such as memory ICs, banks of LEDs, and pixel array displays, have been designed
to operate using parallel communication. However, the microprocessors embedded in most
microcontrollers do not directly provide access to the address bus, the data bus, and the
various control lines. Instead, designers must “recreate” the necessary interface lines using
the general purpose I/O bus pins available on the controller.

Disclaimer
In earlier years in CNT, all of the programmatic control of the peripherals was done using
variants of Assembly Language. Recently, the course has migrated to a heavier emphasis
on ANSI C. Since the material developed in Assembly Language is still valid for the
microcontroller you’re currently using, the associated material has not been removed. You
may find it useful, either if you choose to write some code in Assembly Language or if you
choose to use it as reference material to help you gain a broader understanding of what is
being done in the ANSI C adaptations.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 54

Interfacing the ICM7218A 8-Digit LED Display Driver
At this point it is difficult for you to display program output in a very meaningful way. The
8-digit LED seven-segment display driver would significantly add output capability to your
programs. We will discuss this device now.

The ICM7218A is not a very complicated device, but it does require addressing and
command codes to operate. This is more challenging than operating a simple indicator LED,
but comes with the benefit of displaying far more useful information.

The first thing to note is how the device is connected to your 9S12X. The ICM7218A device
requires 8 instruction/data connections, and 2 control signal connections. On your
development board, the instruction/data connections have been tied to Port B, and the
control signals have been tied to PA0 and PA1 of Port A. All communication to the
ICM7218A device will occur through GPIO on these two ports.

The ICM7218A is able to interpret input in a number of ways, and may be commanded to
update single digits or update multiple digits. The full operation of the device is beyond the
scope of this document, but is something you are encouraged to investigate.

The easiest way to get output on the display is to write a command byte to the device
(which contains a digit address) and then write out the data for the digit. Because the
device is connected to the 9S12X through GPIO, you must manually produce the correct
signals to have this happen. Before any signals may be generated, Ports A and B must first
be configured correctly.

You will only be writing to (not reading from) the ICM7218A, so all port pins used should be
configured as outputs. It is also important that the active low “/write” line of the device
stay high until you actually write to the device. To protect against this, you should set the
outputs on the port to HIGH before your set the data direction registers for the ports.

To Sev Seg Displays

PB6
PB5 To Sev Seg Displays
PB7
PA0
PA1
PB4
PB1
PB0
PB2 To Sev Seg Displays
PB3

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 55

The code below is an S12XCPU Assembly Language initialization subroutine for the
ICM7218A. To begin with, the two 9S12X ports attached to the device need to be set up as
outputs. Good design procedure indicates that the data on the port should be set to a
known condition that will have minimal effect on the connected device when the port is
enabled as outputs, as shown in the following code.

Note the use of “BSET” for DDRA and PORTA. By only affecting two bits in this register, the
rest of PORTA is left untouched, which means it can be used for other purposes if desired.

This routine will correctly initialize the ports for communication with the ICM7218A device.
However, there’s no guarantee as to what will appear on the display digits when the device
is first accessed, so the last line in the header is a lie at this point – this line could be
included in the actual code once a subroutine called “SevSeg_BlAll” was written.

The following pages will provide you with a working knowledge of the operation of the
ICM7218A seven-segment display driver, so that you can write code to display values on
the seven segment display array.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 56

The Maxim ICM7218A data sheet can be found here:
http://datasheets.maximintegrated.com/en/ds/ICM7218-ICM7228.pdf

Here are the most important programming-related tables from this data sheet.

ICM7218A Programming Tables

Getting the device to display information can be done in a variety of ways. You have the
ability to turn on individual segments of any of the 8 digits (“No Decode” – the digits map as
shown below), but the easiest thing to do is have the device decode the input as Hex
(“Decode” –> “Hexadecimal Decoding”). Another option is “Decode”–>“Code B Decoding”,
which produces a different set of characters including H, E, L, P and Blank but not the top
six Hex numbers, A – F.

http://datasheets.maximintegrated.com/en/ds/ICM7218-ICM7228.pdf

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 57

Sending Data to the ICM7218A
To get a digit on the display, you must send a control byte to the device that describes the
digit address and mode of operation. After this you must send the byte value for the digit.

The device will require that the /write line to be lowered then raised to latch the data. This
is referred to as “strobing” the /write line. The mode control signal will determine if the
byte being written is a control byte or a data byte. Here are two timing diagrams from the
datasheet that show how this works:

The procedure for sending a single control command (Figure 4) is as follows:

• Control:
o Present control byte on GPIO data lines (Port B)
o Set mode HIGH and write LOW (indicate that you are writing a control byte)
o Set write HIGH (latches the control byte into the device)

The procedure for sending a single digit (Figure 5) requires both a control byte and a data
byte, as follows:

• Control (containing the address and other control bits):
o Present control byte on GPIO data lines (Port B)
o Set mode HIGH and write LOW (indicate that you are writing a control byte)
o Set write HIGH (latches the control byte into the device)

• Data:
o Present data on GPIO data lines (Port B)
o Set mode LOW and write LOW (indicate that you are writing a data byte)
o Set write HIGH (latches the data byte into the device)

The bits in the control byte affect the behavior of the device, and, in the mode we’re using,
are also used to set the address of the digit being written to. (A note of caution: other
manufacturers make versions of this controller that do not allow individual addressing of the
digits – in these, all eight digits must be written in a single sequence each time the display
is updated. The discussion in this course material is specific to the Maxim part.)

Locate the table of Input Definitions (shown previously, from page 5 in the current data
sheet). For standard writing of a hex character, you are interested in Hex mode, Bank A,
normal operation. Using the table of Input Definitions, verify each of the bits in the control
byte shown in the routine on the following page. Add an ANSI C version of this routine to
your library.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 58

Seven Segment Display Library Components
The following S12XCPU Assembly Language version of the initialization routine is included as
a reference that can be used as a jumping point for all of the library components you will
need to write for your ANSI C library. One thing you may find particularly useful from this
version of the routine is the system used for bitwise commenting the command byte.

Note how “BSET” and “BCLR” were used so as to preserve the state of the upper six bits of
PORTA, just in case this port is being used for some other purpose in your program. In
ANSI C, you will need to use AND or OR operators to achieve the same functionality.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 59

Seven-segment Display Control Using ANSI C
You are going to need three program files in a new project: a library header file
(SevSeg_Lib.h), an uncompiled C library file (SevSeg_Lib.c), and the main program file
within the project itself (its default name will be main.c).

SevSeg_Lib.h
The header file will probably be supplied to you by your instructor.

SevSeg_Lib.c
Now comes the task of creating the actual library and the functions to match the prototypes
in the header file. The library file needs to be linked to the files it will be using, which
include the ones set up when a project is created: the ANSI C library hidef.h and the
derivative.h file set up to provide the labels for all the ports in our particular 9S12X
microcontroller. Also, if any of the functions call other functions in the library, it needs to
be linked to itself. Notice again the different syntax for including a standard compiled
ANSI C library and for including an uncompiled library. As previously discussed, you will
need to add both the .h and .c files for the uncompiled libraries to the project, whereas the
compiler will find the standard library without our help.

The first function you’ll need is an initialization routine that does what the Assembly
Language version did. In this case, we can do practically a line-by-line translation into C.
This will not always be the case when moving from Assembly Language to C, as the thought
processes involved in programming for the two languages is fundamentally different.
Sometimes, Assembly Language provides the most succinct and efficient result, whereas
other times the structured nature of C will allow the programmer to easily control program
flow in ways that would be difficult to achieve in Assembly Language. Here’s a suitable
initialization function, but with the screen blanking function disabled until we build it.

Notice the use of bitwise OR commands for working with PORTA. Again, the upper six bits
of this register are not being used for the seven-segment display, so, if we are careful not to
mess with them in our routines, they will be available for other applications if so needed. If

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 60

we had written an entire byte to PORTA and DDRA (i.e. PORTA = 0b00000011 and
DDRA = 0b00000011), we would have messed up any other activity on the upper six bits.

This is a good time to create a project that you can use for testing the library you are
working on. Follow the steps outlined previously, and create a project called something like
“SevSegTest”. The following screen capture shows a sample “main.c” file, but it also shows
what needs to be done to include the library you’re working on. (You won’t be able to run
this code yet, as you will need to create SevSeg_Char first. At least try your initialization
routine, which, without the blanking function, will probably display garbage.)

To include the library you’re building you need to do three things:

1. In the browser to the left of the screen, search for and add the library’s “.c” file
under “Sources”.

2. In the browser, add the library’s “.h” file under “Includes”.
3. In the main file, put in the #include statement as shown.

In the main file, notice that a counter variable has been declared and initialized in the
“Variables” section.

SevSeg_Init() is called in the “Initializations” section, outside of the main loop for the
program. You only want to initialize the ports once – not each time through the loop.

Since this entire code was only intended to be run through once, there’s a HALT command
to stop execution at the end. This is not usually a useful command in a microcontroller
program, but helps us with testing or troubleshooting functions as we program.

It’s up to you now to build the rest of the functions in this library. For each item, make sure
you adhere to the prototype in the .h file. Here’s a sneak peek at a suitable function for
blanking a single character, passed as an address between 0 and 7.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 61

Once you’ve created the above function for blanking a single character, you can use it to
blank all eight digits. A good way to do this, using the ANSI C way of thinking, is shown
below.

Go back to your initialization function and enable the line that calls SevSeg_BlAll(). You
should now be able to display a completely blank set of eight digits on the seven segment
display. (I know, I know, it’s pretty exciting to you, but the average person on the street
won’t understand, so don’t rush out looking for someone to show this to!)

Once you’ve created a function for displaying a single digit at a specific location, you should
be able to run the code shown on the previous page. Then you should be able to finish off
the rest of the items required for this library, as shown in the header file.

Hopefully, you can see how what you’ve learned in your C# courses transfers to writing
code in ANSI C, which was the original language from which all the various C-family
derivatives grew. With a basic knowledge of the operation of the 9S12XDP512, a chance to
work at the machine level using S12XCPU Assembly Language, and a fair bit of experience
programming in C#, you should soon be able to make your microcontroller development kit
carry out some fairly sophisticated activities.

Binary-Coded Decimal Representation and Manipulation
At this point, you’re probably aware of two conflicting realities: Your microcontroller only
talks binary, which we often compress into hexadecimal for easier viewing; and the bulk of
humanity works with decimal numbers.

The cross-over between these two systems is something called Binary-Coded Decimal
(BCD), a system that uses hexadecimal (actually binary) coding to represent decimal
values. It’s important to remember that BCD is a code, not a real number system. It’s a
way to use hexadecimal values to represent decimal numbers. Real math must be done by
your microcontroller using hexadecimal (“real numbers”). BCD is only for display purposes.

In BCD, the upper six hexadecimal values (ABCDEF) are not be used, since they’re not a
part of the decimal number system. Instead, after 0123456789, the sequence must roll
over to 10. The microprocessor will consider this to be 1016 because it only does binary
(shown here as hexadecimal). But it looks like 1010 to the rest of us, and, properly used,
would be the BCD representation of 1010. For clarity, we’ll use the notation 10BCD.

BCD’s only purpose is to display values in a form humans are comfortable with. Just
because they could, the designers of microprocessors made by Freescale have included the
DAA (Decimal Adjust Accumulator A) command that allows you to do simple addition of BCD

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 62

values. This author’s recommendation is that you let your microcontroller do all its work in
hexadecimal (true numeric values), then convert the results to BCD when needed for a
human interface. Other instructors may feel differently – humour them if necessary.

Converting Hexadecimal Values to BCD
In a previous course, you learned the “Division with Remainders” method of converting from
numbers of any base to decimal. Division with Remainders involves dividing the number
repeatedly by 10 (i.e. A16), each time concatenating the remainders together, starting at the
right and moving left. Here’s an example:

Convert 123F16 to decimal.
 _0, R:4
 A)4, R:6
 A)2E, R:7
 A)1D3, R:1
 A)123F
 Final result: 123F16 = 467110, or for human display, 4671BCD
If we used a microcontroller to hold or display this value, it would hold it as 467116, which is
certainly not 467110, nor is it intended to be thought of as 467116. That’s why we use the
notation 4671BCD, and why we only use this to represent the value as a coded
representation that humans are comfortable with.

Also in your previous course, you developed and used a Hexadecimal-to-BCD converter
using S12XCPU Assembly Language. Here’s one version of that routine:

Notice that this routine does the entire hexadecimal to BCD routine in the six lines of the
“Hex2BCD5Loop”: the rest of the subroutine is concerned with compressing the resulting
BCD representation into the D Accumulator, with the fifth digit in the X register.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 63

Using ANSI C, all of the details of packing and returning the coded characters can be
handled by the cross-compiler. Also, since we’re no longer directly concerned with the sizes
of the accumulators, we can change our parameters.

In the Assembly Language version, we chose to return a five-character value because the
largest number we could send, in a sixteen-bit register, was FFFF16, or 65,535BCD, which is
five characters. Of course, that’s difficult to display on the seven-segment displays we’ve
got, at least in the way they’re configured. On your own, you could build a board that has
the displays side-by-side, in which case displaying five digits would make sense.

Now that we’re no longer directly tied to the size of the accumulators, we’ve got some
decisions to make:

• The way our board is configured, it probably doesn’t make sense for us to work with
numbers larger than 9999BCD, or 207F16, if the target is the seven-segment display.

• If we want a generally-useful hexadecimal-to-BCD converter, we could choose to
work with a “Long” data type, in which case we could return eight characters and
raise the size of the number we’re working with to 99,999,999BCD, or 5F5E0FF16.
Handling all the digits returned by the function would then be up to the programmer.

• If the target is some device that works in ASCII, such as the LCD display, a
computer acting as a “dumb terminal”, or a Raspberry Pi, you might want to display
your values as floating-point numbers converted to ASCII strings, formatted using
the “sprintf” function available in the ANSI C “stdio.h” library.

For simplicity, let’s work first with simple 4-digit converters suited to use with the seven-
segment display, which is looking for actual numbers (i.e. 0 to F in hexadecimal or 0 to 9 in
BCD), not ASCII (which would be 0x30 to 0x39 for both hexadecimal and BCD, and 0x41 to
0x46 for the rest of the hexadecimal numbers).

You are going to need a library for various miscellaneous functions. Here’s a header file for
this library, called “Misc_Lib.h”, and it shows you the functions you will eventually add to
the source-code library. It’s best that you comment out the prototypes that you haven’t
developed code for, and enable them when you’re ready to use them.

Misc_Lib.h

Notice that the routines come in three groups: BCD, ASCII, and Timer. For now, we’ll just
do the simple BCD-related functions.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 64

HexToBCD
In a source-code file named “Misc_Lib.c”, you will want to create a function that does the
Division with Remainders routine we used in the S12XCPU Assembly Language routine
previously. The code snippet below shows the heart of this routine, done using division and
modulus operations. Recall that the modulus operation (%) provides the remainder of an
integer division, whereas the division operation provides the integer result with no rounding.

Notice that there are three local variables: iBCDOut, cCount, and iPow. Declare these and
initialize them within the function, but ahead of any active code.

Prior to this code snippet, iPow was initialized to 1 and iBCDOut was initialized to 0. So,
first time through, the remainder is multiplied by 1. The second time through, the
remainder is multiplied by 16 and added to the previous remainder; in other words, it is put
in the next most significant nibble of the result. The next time through, the remainder is
multiplied by 256 and added to the result, and the last time through it is multiplied by 4096
and added to the result. Consequently, the BCD characters end up in the required four
nibbles of the final result, starting with the least significant character and ending with the
most significant character.

In your function, you should also provide some sort of error trapping. If the number sent to
the function is greater than 9,99910, it’s probably best to return some recognizable value
that’s out of range rather than some gibbled half-BCD/half-hex result. If we return FFFF, it
should be clear that this represents an error, as BCD does not include the character ‘F’.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 65

BCDToHex
As with HexToBCD, we’ll create a simple routine to convert integers up to 9,999BCD to their
equivalent true number values in hexadecimal so that the microcontroller can use them for
numeric calculations. In your previous course, you worked with an S12XCPU version of this
routine, as shown below. This routine is pretty complex, given that we needed to
manipulate the digits individually, and, to avoid variables, we used the stack for storage.
One item we won’t be able to duplicate easily in C is indicating a valid value using CARRY.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 66

This routine doesn’t need error trapping for the size of the number, because the
hexadecimal value will always take the same or fewer nibbles. However, it does need a trap
for invalid characters (A through F, since these are never valid in a BCD representation of a
number). Since there’s no particularly easy way, like checking the CARRY bit, to indicate an
invalid BCD value, we’ll simply return a value that is out of range and leave it up to the
programmer to decide what to do with that.. Again, FFFF is a good choice, since the biggest
return value is 270F. The programmer can be left to decide what to do with errors.

Since the logic and mathematics behind this routine can be a bit complicated, a fully-
functional version of the code is shown below. Before you simply copy this routine, make
sure you understand how it works. Other instructors may ask you to use or develop slightly
different code to perform the same task – being nice to them will be to your advantage!

First of all, notice how much more compact the ANSI C version of this routine is than the
S12XCPU version! To a great extent, that’s because we can declare and use local variables,
so we don’t need to manipulate the stack. (Incidentally, the C compiler may ignore your
declared variables and use the stack instead – you’ll never know until you disassemble the
code to see what it did or try to trace the variables, which won’t be listed if the compiler
chooses not to use them. Some of us old-guard programmers find that mildly disturbing.)

Notice that we use 16, (i.e. 0x10), in our division and modulus calculations. That’s because
the microprocessor only really works in binary (i.e. hexadecimal) values, so even if we
picture a BCD value as a real number, the microprocessor thinks of it as hexadecimal. So,
to correctly locate and identify the characters, we need to work with them in groups of four
bits, or 16’s, not 10’s. For example, consider 1264BCD: 0x1264 / 16 = 0x126 with a
remainder of 4. By doing so, we identify the lowest digit, and preserve the upper three
digits for the next stage of the calculation. If we tried 0x1264 / 10, we’d get 0x1D6 with a
remainder of 8, which is no use to us at all.

Once we identify the characters, we multiply them by powers of ten to make them into real
numbers, which we add together to get the final true number. In the above example, we’d
get 0x4F0, which is – you guessed it – 126410.

Each incoming character is checked to see if it is valid for BCD. If any invalid character is
encountered, we break out of the loop and return FFFF.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 67

Switch Management
Switches, as user interface devices, have two complicating features:

• Long Activation Times
• Bounce

Consider a computer keyboard: When you press a key, the mechanical action of that key
results in a number of connects and disconnects while the spring mechanism settles down.
Once the key is pressed, your finger remains on that key for a certain period of time, which
seems quite short to you but could be thousands, even millions of cycles of the computer’s
clock. How does the keyboard controller “know” that you only intended one instance of that
particular keystroke, even though it’s aware of multiple quick changes of state followed by
thousands of readings of the switch’s new condition? Let’s work through these problems.

Detecting Switch Change of State
There are basically four ways to write a program to respond to switches.

• The first situation is one in which it doesn’t matter if the switch condition is read
thousands or millions of times – the output directly relates to the current condition of
the switch at all times.

For example, you could have a program that turns the RED LED on as long as the
LEFT switch button is pressed. “while (LEFT()) RedOn;” is pseudo-code for this.

The other three are ways to make it so that your program will respond just once to each
button press or change of switch condition.

• One way is to have the program branch away from the routine that’s checking for
the switch as soon as the switch change is detected, thereby ignoring the condition
of the switch until it is needed again. State Machines use this technique, staying in a
particular state until a transition condition occurs to go to a new state. This works
well in menu-driven applications, too, where selecting an item from a menu sends
the microprocessor off on a particular task that doesn’t check the switch again.

• A second way is what’s called a blocking routine, where the program is held up until

the switch condition changes back to its original condition. For example, the switch
may normally be open. When it is closed, the program executes the desired action,
then enters a loop, waiting for the switch to be released before it continues on to
other commands. This blocking action may or may not be an issue. If you have
other things that the program should be doing, holding it up waiting for a switch to
be released is a bad thing; but if your program has nothing better to do than wait for
the switch to be released, blocking isn’t a problem.

A variant of this which is sometimes useful is to wait for the switch to be released
before executing the code. For most applications, this feels odd, because the action
doesn’t happen when you press the button – only when you release it. You’re
familiar with one application of this: touch screen item selection. With a touch
screen, you can put your finger on an icon or control on the screen, but it doesn’t
respond until you lift your finger. This allows you to change your mind – if you
decide you don’t want to do what you’ve just touched, you can move your finger
away before lifting, and the originally-selected action doesn’t happen. This would

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 68

not be a good thing to do with an emergency shutoff switch, though – you want the
equipment to stop as soon as you press the switch, not when your unconscious body
finally falls away, releasing the switch!

Remember that either of these will “block”, or hold up the processor, which may not
be acceptable. Choose wisely!

• The non-blocking way to handle this is to use memory (i.e. a variable) to keep track
of the previous condition of the switch. This technique is the best for continuous
loops that need to monitor a switch or a set of switches continuously, such as in a
control system or in something like a keypad or keyboard entry system for a
calculator or computer. Here’s a typical sequence:

o With the switch open, the variable is cleared to indicate that the switch has
not been pressed in the recent past.

o If at some point the switch is closed, the program compares the current
condition to the previous condition, detects a difference, records the new
condition by setting the variable, and provides an indication to the main
program that the switch condition has changed.

o The next time through, if the switch is still closed, the current condition will
be the same as the previous condition, so the routine will report no change,
and therefore the program can ignore the switch.

o Once the switch is released, the difference will be detected, the new condition
will be stored (i.e. the variable will be cleared), and the main program will be
notified that the switch has been released. The program can be set up either
to respond to this change or to ignore it (which is probably the most likely
situation).

o Next time through, the variable and the condition of the switch will be the
same (both cleared), so no change will be reported to the main program.

Note: If you need to keep track of the states of a number of switches, read them
all at once and, if there’s a change, store all of them in the switch state variable.
Your code for the above situation, then, would look like this:

Other switches would then be checked using their own “if” statements (or a
switch – case) inside the main “if” statement.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 69

Debouncing
If you’ve entered and tried the previous code snippets, you’ve probably noticed that the
displayed count sometimes skips ahead by one or two when the switch is pressed. This is
due to switch bounce, which we will now address.

The simplest form of debouncing involves detecting a change of switch state, then ignoring
all subsequent changes for a period of time that’s long enough to pretty much ensure that
the switch has reached a steady state.

A slightly more reliable debounce sequence involves waiting for a short period of time, then
checking to see if the switch is still in the new condition. If not, it must be bouncing – store
the condition, wait for another short period of time, and check again. Once the state is
consistent from one loop to the next, assume that the switch is stable and continue on.

These two types of debouncing both require a blocking loop – the program is held up in a
timing loop while we wait for the switch to settle down. It is possible to design a non-
blocking debounce routine which continues to run the main program while it waits for the
switch to stabilize, but we shouldn’t need to get that complicated in this course. The
amount of time we spend in the debounce routine is so small (on the order of 10 ms) that it
probably won’t affect the routines we’re creating.

This is a good time to make a library of switch and LED-related functions to link into our
program. The following is the contents of a header file that your instructor will probably
make available to you in one form or another.

All but the last item in this list should be relatively easy for you to create. (Your instructor
will likely ask you to complete these items.) The SwCk() routine, which returns a
debounced version of the present conditions of all five of the switches, is provided below.
Add comments!

SwCk() Debounced Switch Routine

In the “main” program, you will need a variable to keep track of the previous condition of
the switches, as in the example on the previous page. In that example, reading PT1AD1
into cSwNew would be replaced by a call to SwCk().

In Moodle, there should be a document on switch management by Simon Walker, as well.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 70

Parallel Interfaces: Get On the Bus
For high-speed communication over short distances, designers prefer to use parallel
interfaces. These interfaces provide one conductor per bit, and deliver all bits in a particular
piece of information simultaneously.

Early microprocessors had 4-bit busses, and could communicate the four bits in a nibble
simultaneously. Later, 8-bit busses were introduced, transmitting whole bytes. Since then,
microprocessors have gone to 16-bit busses, then 32-bit busses, and now to 64-bit busses
in an attempt to keep up with the growing speed requirements in the computer market.

The microprocessor at the heart of the 9S12X microcontroller uses a 16-bit bus. In fact, it
uses two 16-bit busses: one for data, and one for addresses.

Data Bus
The data bus carries information between two devices, and is typically bidirectional. In
other words, data can be sent to the device and data can be received from the device.
Some specialized devices require only one of these directions. All bussed devices in a piece
of equipment will share the same bus, but only one device can talk at a time. If more than
one device tries to talk, the results will be, at best, totally unintelligible, and at worst,
damaging to one or more of the devices on the bus. To prevent this, bus interfaces on idle
devices are put into a state called “High-Z”, or high impedance, effectively disconnecting
them from the bus so they won’t interfere with other devices.

Address Bus
In order for the microprocessor at the heart of a bussed communication system to talk to
the right devices at the right time, each device (and, almost always, each memory location
within a device) will be given a unique address. So, for example, when you want to see if
the switches on your board are pressed, you need to look at address 0x0270 in the memory
space of the 9S12X micro – the address assigned to PTADHi. As you run your code, the
Program Counter steps its way through the addresses in ROM where the bytes that make up
the opcodes and operands in your assembled machine code reside.

The number of unique addresses depends on the number of address lines in the address
bus. If the address bus is sixteen bits wide, as in the 9S12X, we can access 216 unique
addresses, or 65,536. Obviously, your home computer’s address bus is a lot bigger than
sixteen bits in order to access all the RAM and all the peripherals it’s got.

Control Lines
So, in order to talk to a device at a particular address, we must put the correct address on
the address bus. But there’s more: the device needs to be activated (placed on the data
bus), and it needs to know if data is coming to it or is required from it. Some devices need
to notify the micro that they need to be serviced, and initiate an Interrupt Request (IRQ).
Sometimes, a device also needs something to synchronize its internal activities with the
microprocessor’s bus clock. All these activities are managed by a separate set of control
lines. The following are typical for Motorola-based microprocessor bus devices:

/EN – when LOW, this line takes the device out of High-Z mode and “places it on the bus”.

R/W – when HIGH, the microprocessor READS from the device; when LOW, the
microprocessor WRITES to the device. (Some non-Motorola-based devices require separate
/READ and /WRITE lines – watch out for these if you end up doing design work!)

PH2 or ECLK – this is a clock line that lags the bus clock by 90º. It is used by devices that
require a bit of time to respond or that need to know when data on the bus is truly valid.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 71

LCD Displays Using the Hitachi HD44780U Controller
A particular LCD controller IC is almost ubiquitous: almost any small character array LCD
will have one of the variants of the Hitachi HD44780 as its brains. In fact, Wikipedia says
“An HD44780 Character LCD is a de facto industry standard liquid crystal display (LCD)
display device designed for interfacing with embedded systems.” – lousy English, but true.
The 4 row by 20 character LCD display on your development kit is driven by one of these.

The HD44780 is, itself, an embedded microcontroller. So, in effect, your development
board an example of parallel processing – two microcontrollers running separate processes,
but communicating with each other to produce coordinated results.

The HD44780 is designed to operate within a bussed, or parallel, interconnect system. It
has eight data lines, requires a single address line to select between two internal registers,
has an active HIGH enable line (that’s unusual – “enable” is usually LOW), and a R/W line.

This controller is quite flexible. The full details of its capabilities are listed in the data sheet,
available in Moodle, with some key parts appearing as needed in this topic. Here are some
of its capabilities:

• Can be used with a variety of LCD displays, ranging from 1 line x 8 characters to
2 lines x 40 characters or 4 lines x 20 characters.

• Can be used on an eight-bit bus or, by multiplexing data lines, on a four-bit bus.
• Can print stationary characters from left to right or right to left, or can scroll

characters to the left or right.
• Can produce characters in a 5 x 8 dot matrix or in a 5 x 10 dot matrix.
• Can display standard ASCII characters or use extended character sets of symbols

from different languages.
• Can be used to display up to 8 user-defined special characters.
• Can control the cursor in a variety of ways.

Upon start-up, the HD44780 has no idea what it’s connected to, on either side: It doesn’t
know whether it’s on a 4-bit or 8-bit bus on the micro side, and it doesn’t know what LCD
it’s connected to on the device side, so it doesn’t know whether to produce 5 x 8 or 5 x 10
characters, or how many rows and characters per row it should be producing. You are
responsible for telling it everything it needs to know, and you can only do that by
communicating with it through the 9S12X.

The HD44780-controlled LCD on the 9S12X Development Kit
If you check out the schematic for your development kit, you’ll discover the following set of
interconnections between the 9S12X and the HD44780.

Port H is used to create an eight-bit data bus, using PH0 through PH7 to map to b0 through
b7, respectively. Port K is used for the address line and the two control lines:

PK2 => RS (internal address select)
PK1 => R/W
PK0 => Enable (active HIGH)

Operation
The LCD controller is able to read instructions and data. The device uses a separate
address line (RS for Register Select) to differentiate between the two. Address 0 accesses
the Instruction Register (IR) and provides control of the device. Address 1 accesses the
Data Register (DR) and provides information to and from the device.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 72

As previously mentioned, the HC44780 LCD Controller is a microcontroller designed to drive
a number of different LCD displays. In our application, it needs to drive a
4-line x 20-character display, with characters built using a 5 x 8 matrix. The 9S12X
Development Kit is also designed for operation using the 8-bit interface described above.

Inside the controller, the display is actually two lines of 40 characters per line, each in a
unique memory location. On our 4-line display, the first “line” of 40 characters actually
appears on lines 1 and 3, and the second “line” appears on lines 2 and 4.

The addresses for the various character locations are as follows:

Line on screen Address (decimal) Address (hexadecimal)

First 0 to 19 $00 to $13

Second 64 to 83 $40 to $53

Third 20 to 39 $14 to $27

Fourth 84 to 103 $54 to $67

Note that the display memory addresses for the lower “line” have bit 6 turned on, which
may be useful if you want to switch between lines. The display memory addresses from
$28 to $3F (40 to 63) are not to be used, and may be mirrors of other display address
locations, resulting in unpredictable behaviour.

You may write instructions to the LCD to shift the display position. This means something
different for different displays – on a two-line display, you can bring “hidden” characters in
from the part of the internal line that are outside of the window. On our four-line display,
the characters roll between lines 1 and 3, and between lines 2 and 4, which isn’t usually
desirable.

The LCD features a cursor. The cursor is configurable for appearance and behavior. The
cursor is usually set to automatically advance to the next location after a display write (i.e.
to the right of the previous character), but you may change this.

The LCD internally keeps track of the display data address (i.e. the character location in the
display, also known as DDRAM). When you write display data to the device, it goes into the
memory location specified by the current display data address. The controller may be
configured to increase or decrease the display data address after a write (i.e. move right or
move left). The display may also be set to shift after a write, providing a scrolling effect –
again, either to the right or to the left. With the four-line display, this means switching to
the alternate line when the DDRAM address gets to the end (or beginning) of the addresses
for the current visible line – again, probably not what you were hoping for.

In this course, you’re expected to have and use the functions shown in the following header
file:

Unfortunately, the _Init routine requires _Ctrl and _Busy, which complicates things. Your
instructor may also ask you to develop functions to generate special characters later.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 73

HD44780 Instructions
In the LCD instructions, the first bit that’s set (HIGH) in the instruction byte determines the
group of instructions to choose from. These instructions are found in the data sheet for the
HD44780, for which a link has been provided in Moodle, and are shown below:

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 74

The default condition of the controller is as follows: 8-bit mode, 1-line display, 5 x 8 matrix,
display off, cursor off, blink mode off, increment cursor position (move to the right), with
shifting turned off (display doesn’t scroll). We need to initialize the controller to make it
match our hardware.

LCD Controller Initialization
Timing is critical in all communications with this controller, and particularly so in the
initialization of the device. To begin with, the Busy flag is not active until a particular
sequence of commands has been executed. In addition, data needs to be present 60 ns
prior to an Enable pulse, and the Enable pulse must be HIGH for at least 500 ns followed by
at least 500 ns LOW. Due to internal activity in the HC44780U, at least 40 ms must be
allowed following power-up. After the first command is sent to the controller, at least 4.1
ms must be allowed before the second command is sent, then 100 µs must be allowed
before the third command is sent. After the third command, the Busy flag becomes
available, and can thereafter be used to monitor the controller’s activity.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 75

LCD_Init
For this discussion, the initialization flowchart from the previous page will be used as a
template for the code developed.

Before we can do anything at all, we need to set up our simple parallel bus interface
between the microcontroller and the LCD controller. Checking back to the schematic for our
board, we see that Port H (PTH) is being used as the eight-bit data bus and the lower three
bits of Port K (PORTK) are being used as the control lines:

PORTK bits:
7 – x
6 – x
5 – x
4 – x
3 – x
2 – RS (register select: LOW for Control, HIGH for Data)
1 – R/W (HIGH for READ, LOW for WRITE)
0 – EN (chip enable: HIGH for Enable)

Most of the time, we will be writing to the LCD controller: we will write control bytes to it to
tell it how we want it to look and respond; we will write data bytes to it, primarily providing
it with the ASCII codes we want to display on the screen. So, it makes sense for us to set
the default condition for the data bus, PTH, as outputs for all eight bits using the Port H
Data Direction Register (DDRH).

Although it doesn’t really matter what’s on the bus when we enable it, good programming
practice suggests we should write something innocuous to the bus, so clearing all eight bits
before we change the pins to outputs is a good idea.

Since we’re only using three of the eight bits in PORTK, we should leave the other five bits
alone in case there’s some other possible use for those bits. So, instead of writing an entire
byte to the Port K Data Direction Register (DDRK), we’ll OR the three bits we need with 1s
to make them into outputs, while leaving the other five alone.

Before we do that, however, we should set the bits in PORTK to the condition we want them
to be in when the port pins are enabled. The resting state that makes sense for us is to
have all three controls lines LOW – RS set for control, R/W set to Write, and EN low so that
the chip is not being addressed. The code below also shows the beginning of the LCD_Lib.c
file that you will be building to match the header file shown previously.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 76

Since we don’t know how long it might take for the power supply to reach 4.5 V, we’ll make
the wait time quite a bit longer than 15 ms. If we do two loops of a full 16-bit countdown
using the three clock cycle Assembly instruction DBNE, we’ll have 49.152 ms, which should
be ample:

2 x 65,536 x 3 cycles x 125 ns/cycle = 49.152 ms

To ensure that we get full control of the microcontroller at this point, we need to do this
part of the code in S12XCPU Assembly Language. This is done by putting the keyword
“asm” in front of the Assembly code, which is now followed by a semicolon since it’s in C.

Next step in the flowchart:

Note the position of the first HIGH in the byte they intend us to send: This is a “function”
control byte. At this point, the controller will only respond to the contents of DB5, which is
SET, meaning that we’re going to be using an eight-bit bus. If you look at the flowchart,
we’ll be sending a “function” control byte four times in a row, with the other settings
included the fourth time through. Since these are “don’t care” for the first three times, it’s
ok for us to make them what we want them to be the last time through. So, we’ll put the
final version of the command on the bus, then just write it four times with the appropriate
delays in between. Here’s the first one (indicated in the flowchart snippet above). Note
that we manipulate the control lines to do what we want, then return them to their resting
state. This is sometimes called “strobing” the control lines, most particularly the Enable.

Check the timing: 11,000 x 3 cycles x 125 ns/cycle = 4.125 ms

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 77

Now for the second attempt: Since the control byte is still sitting on the bus, all we need to
do is strobe the control lines again, then wait the required time.

Check the timing: 267 x 3 cycles x 125 ns/cycle = 100 µs

Third time from the flowchart. Oddly, for this, no delay time is indicated. However, Our
microcontroller is faster than the LCD controller, so we’ll insert a delay, anyway. We’ve
already got a 100 µs delay calculated, so we’ll use it.

According to the notes, the HD44780 LCD controller should be working properly, and its
“Busy Flag” should be available for further instructions. And, although it seems from
experience that the HD44780 has been properly configured at this point, the flowchart says
“do it again”, so who are we to argue?

This time, we’ll rely on the busy flag, and will use the LCD_Ctrl() command. Oh, wait a
second, we haven’t written that yet! We’ll code in the function call, then come back to
writing it later.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 78

Finally, we’ll fine-tune the settings. The settings in the flowchart don’t match the operation
your instructors prefer, so you’ll notice differences in the code that follows. For one, the
flowchart turns the display off, which seems counterproductive after all that work!

LCD_Ctrl
The LCD_Ctrl routine passes an 8-bit control byte, which it sends out, once the “Busy” flag
is cleared, using RS HIGH for control, R/W LOW for WRITE, and Enable strobed HIGH then
LOW. That’s a pretty simple routine, given what you’ve had to do in the LCD_Init routine.
However, it relies on yet one more function, LCD_Busy, which we will also have to write.

Make sure you understand how LCD_Ctrl works: you’ll need to use a very similar technique
for sending a character (data byte) to the LCD later. By the way, we could have used
(while(LCD_Busy()); to wait for the Busy Flag to be CLEARED.

We still need LCD_Busy, which checks to see if the controller is available for communication.

LCD_Busy
The LCD_Busy routine must query the LCD controller for the info in its Status Register which
contains the Busy flag and seven bits representing the cursor’s current location. (We don’t
care about the info about the cursor’s location, so we’ll ignore it and just look at the flag,
which is the most significant bit). Getting this information from the LCD controller can be
done by executing a READ of the internal register, which becomes the Status Register when
read from, instead of the Control Register we’ve been writing to.

This involves switching the direction of the data bits to inputs. The routine we’re going to
write is a non-blocking routine, allowing the user to write programs that continue on until
the LCD controller is free. In the LCD_Ctrl routine above, we block until the controller is
free anyway, as indicated by a non-zero return from LCD_Busy. However, the LCD_Busy
routine as written allows us the option of moving on if we want to.

Once we’ve read the status register, we need to switch the port back to outputs.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 79

As always, make sure you understand how this routine works before you start using it.

LCD_Char
Up to this point, all we’ve done is get the LCD controller set up and ready to work for us.
The LCD is now sitting there doing nothing until we send it ASCII characters to display.
LCD_Char() is the name of the function we’ll create to carry out this task.

The only differences between LCD_Char() and LCD_Ctrl() are the type of data sent and the
internal register it’s sent to.

• The data sent will be a single ASCII character. So, if you want to send a number,
you’ll have to do a Hex to ASCII conversion first.

• The target in the LCD controller is the Data Register, not the Control Register. That
means that you will need to SET RS when you strobe the control lines.

That should be enough information for you to create and test LCD_Char(). If you need
further help, your instructor can provide it.

LCD_String
Quite often, you’ll want to send multiple characters to the LCD (or to other peripherals or
equipment that’s looking for ASCII characters). The best way to send longer strings of
characters is by using a null-terminated string of ASCII characters. The LCD_String
function you will be creating can handle strings of any length (up to the length of a row on
the LCD display, or 20 characters), since it’s not looking for a particular length, but is
expecting the string to end with the NULL character (ASCII code 0). The routine transmits
each character, then checks to see if the character was a NULL. If it is a NULL, program
execution exits the function.

You will be using LCD_Char() as the working block of LCD_String(*), a routine that sends a
null-terminated string, from a memory location specified in your program, to the LCD.

In ANSI C, the starting point of a string or array of bytes is referenced using pointers. The
following screen clip of the author’s LCD_String function shows how to get the contents of
an address which is being pointed to using an asterisk (*). cString is the label of the string
you want to transmit, and is actually initially the address of the first character in the string.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 80

Take some time to make sense of how the pointer is being used in the LCD_String()
function. In this course, there won’t be much need to learn more about pointers than you
see in this example. If you need to know more, the Internet is an endless source of wisdom
and hilarity regarding pointers, along with the dereferencing “*” operator and the “&”
address operator used for pointer management.

LCD_Addr
This is intended to be a simple way to locate a particular position on the LCD display. All it
does is to take the address provided, convert it into a DDRAM Address control byte, and
send that command to the LCD controller. The cursor will move to that location, ready for
you to send a character to that spot. Here’s the code for this function:

Compare back to the table of instructions for the HD44780 controller to see why the MSB
needed to be changed to 1 before sending the address to the control register.

LCD_Pos
In order to use LCD_Addr effectively, the programmer needs to know what the valid
addresses are and how they are arranged on the display. The following table appeared
earlier in this document, but has been duplicated here for convenience:

Line on screen Address (decimal) Address (hexadecimal)

First 0 to 19 $00 to $13

Second 64 to 83 $40 to $53

Third 20 to 39 $14 to $27

Fourth 84 to 103 $54 to $67

LCD_Pos() is intended to simplify the process of moving to a particular location on the
display. The basic idea is to pass two numbers to the function: a ROW and a COLUMN, and
let the function generate the correct address to send to the controller using LCD_Addr().

For consistency between classes, the instructors for this course have settled on zero-based
row and column addressing, so the available rows are 0 through 3 and the available
columns are 0 through 19. Part of the necessary code for this routine is shown below; you
are expected to complete the function so that it works satisfactorily. This code
demonstrates an application for the switch->case operation in C.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 81

At this point, you will have at your disposal all of the LCD functions deemed necessary by all
of your instructors. Your instructor, however, may want you to generate a collection of
other functions to enhance your use of the LCD on your board. Some of these may simply
be LCD_Ctrl() calls that do things like turn the cursor on or off, blink on or off, clear the
display, etc. without requiring you to constantly look up the instructions on the table.

Character Generation
One set of optional functions you can try out allows you to access the LCD’s capacity for
generating characters other than the ones in the ASCII set contained in its memory. If your
instructor deems this extraneous, you can skip the next few pages.

Your LCD is able to display 8 user-defined characters, which you design pixel by pixel within
the 5 x 8 pixel matrix. The memory in the device that holds the pixel pattern is known as
character generator RAM (CGRAM).

These user-defined characters will take the place of the first eight ASCII characters. In the
ASCII table, these are non-printable characters, so Hitachi engineers decided to re-define
them as the spaces available for your custom characters. So, to access the characters you
generate, simply reference ASCII characters 0x00 to 0x07.

To get your user-defined character patterns into the device, you must program them, row
by row, for each character. The device must also be instructed to accept CG data. The “Set
CGRAM Address” instruction does this. Here it is from the data sheet’s table of instructions:

This instruction is written to the LCD Instruction Register and tells the LCD that all
subsequent data written to the Data Register will be CG (Character Generation) data. The
instruction includes the address of CGRAM to start at for a given character. Only 6 bits are
required, since only 64 bytes are need to represent the eight 5 x 8 characters – each row of
pixels in a character requires one byte, so each of the eight characters requires eight bytes.

The top of ASCII character $00 is at CG address $00, and extends to address $07. Note
that the first 3 bits (most significant) are ignored, as the characters are only 5 pixels wide.

In the current version of the data sheet, Table 5 shows you how to build the bitmap for
special characters in CGRAM, as shown on the next page:

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 82

CG data may be programmed at any time, including when characters for that type are
currently being displayed. Some unusual animation effects may be generated by re-
programming the characters that are currently being displayed.

Once the programming of CG data is complete, the device should be set back to display
data (DDRAM). The “Set DDRAM Address” instruction does this. Go to DDRAM address 0,
the home position on the display, as a good place to start. This instruction sets the LCD to
accept DD information from the DR for all subsequent writes.

Remember that you can create up to eight custom characters. The following two functions
can be used to create a single character at a given location or to create all eight available
characters from a table of 64 row-definition bytes defining all eight characters.

• LCD_CharGen () is a routine that builds a single custom character for the ASCII code
passed to it as a parameter (0x00 to 0x07), with the character definition pattern
beginning at a location pointed to as a parameter.

• LCD_CharGen8() is a routine that builds eight custom characters, with their
definition patterns beginning at a location pointed to as a parameter. (If you don’t
need all eight characters, just fill the unused row bytes with nulls to produce blank
characters.) This function doesn’t need an ASCII code, since it fills 0x00 to 0x07.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 83

LCD_CharGen Example

Notice that LCD_CharGen() is run only once, in the initializations. That’s where ASCII
character 0x01 is created. To use this character, we simply display ASCII character 0x01
by using our LCD_Char() function. The results are seen below. Notice how the pattern in
the first row relates to the pixel map shown in the Variables space above.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 84

LCD_CharGen8 Example
Here’s the author’s version of LCD_CharGen8(). If you’re an enterprising type, you will
probably realize that you don’t need to modify this much to make LCD_CharGen(). The
eight-character version writes 64 bytes into CGRAM, starting with address 0x00 and going
to address 0x3F.

To keep the entire useful code together, the following images have been shrunk probably
beyond your ability to read them on paper. However, you can zoom in on the electronic
version to see more detail.

Notice again that LCD_CharGen8() is only run once in the initializations, and creates all
eight custom ASCII characters: 0x00 through 0x07. Once created, these characters can be
displayed in the same way as any of the other pre-defined ASCII characters.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 85

ASCII Code Manipulation
The LCD display and the Serial Communication Interface (still to come) work primarily with
ASCII values. The following table shows the standard 7-bit ASCII codes.

ASCII Table
Char Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex

(NUL) 0 0x00 (SP) 32 0x20 @ 64 0x40 ` 96 0x60
(SOH) 1 0x01 ! 33 0x21 A 65 0x41 a 97 0x61
(STX) 2 0x02 " 34 0x22 B 66 0x42 b 98 0x62
(ETX) 3 0x03 # 35 0x23 C 67 0x43 c 99 0x63
(EOT) 4 0x04 $ 36 0x24 D 68 0x44 d 100 0x64
(ENQ) 5 0x05 % 37 0x25 E 69 0x45 e 101 0x65
(ACK) 6 0x06 & 38 0x26 F 70 0x46 f 102 0x66
(BEL) 7 0x07 ' 39 0x27 G 71 0x47 g 103 0x67
(BS) 8 0x08 (40 0x28 H 72 0x48 h 104 0x68
(HT) 9 0x09) 41 0x29 I 73 0x49 i 105 0x69
(NL) 10 0x0a * 42 0x2a J 74 0x4a j 106 0x6a
(VT) 11 0x0b + 43 0x2b K 75 0x4b k 107 0x6b
(NP) 12 0x0c , 44 0x2c L 76 0x4c l 108 0x6c
(CR) 13 0x0d - 45 0x2d M 77 0x4d m 109 0x6d
(SO) 14 0x0e . 46 0x2e N 78 0x4e n 110 0x6e
(SI) 15 0x0f / 47 0x2f O 79 0x4f o 111 0x6f

(DLE) 16 0x10 0 48 0x30 P 80 0x50 p 112 0x70
(DC1) 17 0x11 1 49 0x31 Q 81 0x51 q 113 0x71
(DC2) 18 0x12 2 50 0x32 R 82 0x52 r 114 0x72
(DC3) 19 0x13 3 51 0x33 S 83 0x53 s 115 0x73
(DC4) 20 0x14 4 52 0x34 T 84 0x54 t 116 0x74
(NAK) 21 0x15 5 53 0x35 U 85 0x55 u 117 0x75
(SYN) 22 0x16 6 54 0x36 V 86 0x56 v 118 0x76
(ETB) 23 0x17 7 55 0x37 W 87 0x57 w 119 0x77
(CAN) 24 0x18 8 56 0x38 X 88 0x58 x 120 0x78
(EM) 25 0x19 9 57 0x39 Y 89 0x59 y 121 0x79
(SUB) 26 0x1a : 58 0x3a Z 90 0x5a z 122 0x7a
(ESC) 27 0x1b ; 59 0x3b [91 0x5b { 123 0x7b
(FS) 28 0x1c < 60 0x3c \ 92 0x5c | 124 0x7c
(GS) 29 0x1d = 61 0x3d] 93 0x5d } 125 0x7d
(RS) 30 0x1e > 62 0x3e ^ 94 0x5e ~ 126 0x7e
(US) 31 0x1f ? 63 0x3f _ 95 0x5f (DEL) 127 0x7f

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 86

Some of these characters (everything less than $20) have special meaning – BD, LF, FF,
CR, BEL, etc. Eight-bit ASCII includes another 128 characters ($80 to $FF) which are called
“extended ASCII” and are not standardized. Trying them out will produce different results
on different displays and terminals, so you’re welcome to play around with them if you have
a fairly high tolerance for frustration. For the Hitachi 44780 display, the following table
from the datasheet shows the characters that can be displayed:

The note at the bottom reiterates the fact that you can create your own characters for
ASCII codes 0 through 7. Apparently, they can also be accessed using ASCII codes
8 through F, but they would be the same characters as 0 through 7.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 87

Upper and Lower Case ASCII Codes
Look at the table of ASCII characters to see what’s different between uppercase and
lowercase letters. (Hint: write them out as binary representations.) You should discover
that there is only one bit different. This makes manipulation of uppercase and lowercase
values pretty simple. The only thing you need to watch out for is that you only want to
change this bit if the value is a valid alphabet character – otherwise, you could be seriously
messing up a number or punctuation mark!

In your Misc_Lib.h header file, you’ll notice that prototypes have been included for two
routines designed to handle changing the case of an ASCII character:

• ToUpper()
• ToLower()

Your instructor will want you to have these routines completed and working, not only for the
LCD, but also for subsequent use with dumb terminals attached to an SCI comm port.

Hexadecimal to ASCII conversion
Look back at the table of ASCII characters. Notice that the ASCII character codes for
numeric digits (0123456789) and the hexadecimal extensions (ABCDEF) do not match their
actual value. In other words, if you want to display “7” on a terminal emulator, sending the
ASCII code “7” will make the terminal beep instead. What you need to do is send “$37” in
order to display “7” on the screen. It’s a code!

Converting regular digits (0123456789) to ASCII is easy – just add 0x30 to the digit or OR
the digit with 0b00110000.

Converting the hexadecimal values ABCDEF to ASCII is similar, but with a different offset.
For these, you need to add 0x37.

In your Misc_Lib, you will want to write HexToASCII() so that you can convert individual
numeric digits to ASCII code in order to send the results to the LCD or other equipment that
displays ASCII codes.

Also in your Misc_Lib, you will want to write ASCIIToHex() that takes the codes for valid
ASCII codes (0x30 – 0x39 and 0x41 – 0x46) and converts them to real numbers (0 – 9 and
A – F). Again, don’t mess with any values outside of these ranges.

Make sure that your function only converts true numerals (0 – 9 and A – F or a – f), and
that it can’t be broken if a two-nibble or two-digit value is sent to it. Incidentally, you can
simplify the handling of A – F and a – f by using ToUpper()inside your ASCIIToHex()
routine.

Your ASCIIToHex() function should return 0 if non-valid (i.e. non-numeric) or double-digit
values are passed to it. It will then be up to your handling of the returned value in the
main() program to determine what to do with a returned 0. You may choose to work with
the returned zero, or you may want to set up a trapping routine that determines when zero
represents an invalid response and when it actually means zero.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 88

The Serial Communications Interface
Your 9S12X chip contains SCI (Serial Communication Interface) modules for asynchronous
serial communications. You will use one of the SCI modules to communicate with a PC
running “terminal emulation” software over a standard RS-232 connection.

Using the PC as a terminal allows you to interact with a color display and a keyboard. This
will bring improved I/O to your programs.

Because you will be reading bytes from and writing bytes to the serial port, the SCI module
acts as a parallel-to-serial and serial-to-parallel converter. There is an external chip on your
microcontroller board that level shifts the signals from the 9S12X (TTL levels) to RS-232
levels (typically around ±10V).

In asynchronous communications, the transmitter may begin a data send to the receiver at
any time. Once started, a complete block of data (known as a data character) must be
completely transmitted. The delay between data characters may be any length.
Transmission of the individual bits in the data character is driven by a clock. The
transmitter and receiver must use a clock rate that is approximately equal in order to
correctly exchange data. The term “asynchronous” refers to the fact that the clocks in the
two pieces of equipment are independent, and communication can be initiated at any time.

The RS-232C standard for serial communication allows for a wide range of signaling
characteristics. Here are a few of them:

• Transmission rates vary from 75 baud to 115 200 baud (these must be at clearly-
specified speeds only, like 9600, but not 10 000, for example)

• Data can be sent as 7-bit standard ASCII characters, 8-bit extended ASCII
characters, or binary data

• Simple error checking, in the form of a Parity Bit, may or may not be activated
• The Parity Bit, if present, can be Even, Odd, always 1, or always 0
• The minimum rest time (“stop bits”) between data characters can be adjusted
• “Handshaking” for setting up and maintaining sessions can be configured or ignored

The 9S12X SCI modules are able to send 8-bit or 9-bit data payloads. This provides a fair
bit of flexibility:

• 9-bit mode provides for 9 actual data bits (very rarely used) or 8 data bits and a
parity bit for error checking

• 8-bit mode provides for 8 actual data bits or 7 data bits and a parity bit

Since the 9-bit configurations require us to check two data registers (eight bits in one and
the ninth in another), we’ll restrict our work to one of the 8-bit modes: 8 actual bits with no
parity. The simple error checking made available by the parity bit isn’t something we need
to concern ourselves with, as, in the lab, we’ll be within two metres of the computer we’re
using as a terminal. If you find yourself in a situation involving greater distance or an
electrically-noisy environment, you might consider enabling and checking parity.

Also, we will be working with the simplest electrical connection possible between our board
and the terminal – three wires only: Ground, Transmit Data, and Receive Data. This
means that we will not be using the bundle of handshaking wires made available in the RS-
232C standard.

Note: When you set up your terminal, select “flow control: none”.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 89

The data character sent in this configuration will consist of 1 start bit, 8 data bits (sent LSB
first), and 1 stop bit. In terminal language, this is referred to as “8N1” communication – 8
bits, no parity, one stop bit. The start bit signals the start of a data character. The data
bits are the data payload. The stop bit signals the end of the data character and is the
minimum delay required between data characters. With early communication equipment,
the stop bit gave the receiver time to process the received data – this is typically a
non-issue these days. In many pieces of equipment, this wait time can be set to 1 bit
length, 1.5 bit lengths, or 2 bit lengths. The 9S12X’s SCI port only offers 1 bit length –
that’s another thing to remember when you’re setting up your terminal. So, once your SCI
port is set up to match the conditions above, you will see something like the top trace on
the TX pin from the microcontroller, and the bottom trace on the TX pin of the Comm Port.

The following shows the formatting and order of bits, as seen at the microcontroller output.

Note: The TTL level for a mark (logic 1) is +5 V, and 0 V for a space (logic 0). However,
these values are approximately –7 V (mark), and +7 V (space) when level-translated to
non-return-to-zero RS-232 levels.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 90

The transmitter clocks out serial data at the transmission rate. The receiver samples the
line at intervals determined by that clock rate to receive the data. It is critical that the
sending and receiving clocks are at the same rate, otherwise the receiver will be sampling
the line at the wrong times. In actuality the receiver typically samples the line at a much
higher rate and considers multiple samples per bit time to determine the state of each
received bit. The 9S12X SCI modules have a sampling rate that is 16 times the bit rate.

The resting state between characters is called “mark idle”, and is a continuation of the stop
bit. Therefore, the start bit is always a space, to let the equipment know data is coming.

The number of bits transmitted per second is known as the baud rate. The data rate is
actually less, since the framing start and stop bits and the error-checking parity bit, if used,
do not contribute to the data payload.

Baud rates for serial communications are relatively slow by today’s standards. The following
is a fairly comprehensive list of available baud rates:

• 75
• 110
• 300
• 600
• 1 200
• 2 400
• 4 800
• 9 600
• 14 400
• 19 200
• 38 400
• 57 600
• 115 200

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 91

Initializing the Serial Communications Interface
To activate an SCI module on the 9S12X, you typically need to configure just three
registers. A full description of the activities of these registers is found in chapter 11 of the
9S12X “Data Sheet”. Look these up if you want more a more detailed understanding of the
operation of these registers than is provided below.

The first register, SCIBD, is a sixteen-bit register (SCIBDH/SCIBDL) that controls the baud
rate for the module, and requires a 13-bit value as a clock divisor.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 92

The three most significant bits of this 16-bit register can be 0, as you will not be using the
infrared configuration for this course. The actual baud rate is the bus frequency (8 MHz on
your board) divided by 16 divided by the 13-bit value provided in SCIBDH:SCIBDL. By the
way, you can simply write a sixteen-bit value to SCIBD. Since there are a number of SCI
ports available, the prototype file distinguishes between them by inserting a number into
the register name. The one we want is SCI0BD. This port is connected to the 9-pin RS-232
connector on your 9S12X board.

If you want to access the other SCI ports, SCI1 is connected to the infrared hardware on
your 9S12X board, and the other ports are available at the break-out headers – just look up
the appropriate pin numbers for TX and RX for the channel you’re interested in. There are
six SCI ports available in total!

If you decide to use the infrared channel for wireless point-of-sight communication, you’ll
also need to manage the upper three bits of SCI1BDH. For standard wired communication,
these can be all be cleared to zero.

Because integer division might make it impossible to hit the desired baud rate exactly, you
will need to select a value that makes the baud rate as close as possible to the target rate.
For example, if you wanted to generate a 19 200 baud rate, what value would you put in
SCI0BD?

8000000 / 16 / x = 19200

x = 26.0417

We can’t place a value of 26.0417 into the baud register. A value of 26 will provide a baud
rate of 19230.8 baud. The oversampling mechanism used by the receiver compensates to
some extent for baud rate mismatch – but it has its limits.

As it turns out, the SCI modules are somewhat tolerant of clock slippage. The Data Sheet
indicates that slow data tolerance (characters arriving slower than expected) is 4.63% and
fast data tolerance (characters arriving faster than expected) is 3.75%.

It is suggested that your baud rates not deviate by more than 2%, as the other side of the
connection will likely have tolerances to deal with as well.

The next configuration register to consider is the SCI Control Register 1, shown on the
following page.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 93

This register controls the main communications behaviours of the module. For example, we
probably don’t want loopback mode, we want the SCI to be enabled in Wait Mode, we want
8 bit data, the device should wake up even on an idle line following a start bit, and we don’t
want parity checking.

So, we probably want SCI0CR1 = 0b00000000!

(Note the typo in the description of “Parity Type Bit”. I guess errors are to be expected in a
1300 page document!)

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 94

The final configuration register to consider is the SCI Control Register 2.

This register configures power state and interrupts for the module. We aren’t interested
(yet) in interrupts, but do want the transmitter and receiver turned on.

So, for now, the best choice for configuration is SCI0CR2 = 0b00001100.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 95

SCI0 Library
The following is the SCI0_Lib.h header file that will probably be provided to you by your
instructor.

To begin with, you should create the appropriate functions in your SCI0_Lib.c to match the
prototypes for the following two initialization routines. Once these are working, you should
develop the first routine, SCI0_Init(lBaud), which provides you the flexibility of operating in
any of the valid baud rates, but requires that you know what these valid rates are.

• SCI0_Init9600
• SCI0_Init19200

Unfortunately, you won’t be able to verify these initialization routines until you’ve created
functions to communicate through the SCI0 port. That’s our next item of discussion.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 96

Communicating through the Serial Communications Interface
Characters are transmitted when written to a register called SCIDRL (SCI Data Register,
Low byte). There are low and high SCIDR registers, but the high register is only used for
9-bit data formats. Since you will only be using 8-bit data transfers in this course, you will
only need to write to the low data register.

Care must be taken to write data to the SCIDRL only when the module is ready. The SCI
Status Register 1 (SCISR1) indicates the current status of the port. The following selection
from the data sheet has been abbreviated to discuss the only two bits that are significant to
us at this point. If you need enhanced error handling, consult the full discussion in the data
sheet.

When transmitting, check for availability of the port using the Transmit Data Register Empty
Flag (TDRE) in bit 7 before attempting to write to the port. If TDRE is a ‘1’, then it is OK to
write a new byte to the SCIDRL. NOTE: TDRE does not indicate that transmission is
complete – it only indicates that the transmit data register is empty, which is good enough
for us. Bit 6 (missing from the above clip) indicates when transmission is actually complete.

To read data from the SCI module you need to read the SCIDRL register. This is a
bidirectional register, as writing to it transmits data and reading from it fetches received
data.

There’s no point in reading the register to get a received byte until a valid new one has
actually been received. You can check to see if a byte has been received since the last read
by looking at the Receive Data Register Full flag (RDRF), which is bit 5 in the SCISR1

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 97

register. This flag will be set when a new byte of data has been received by the module.
So, if this flag is a 1, you should read from SCIDRL to extract the received byte.

NOTE: The SCI module is only able to buffer one received byte. If you fail to extract a
received byte before another is received, a buffer overrun condition occurs and the previous
data character will be lost.

When you create a routine to receive a byte of data from the SCI, you don’t necessarily
want the subroutine to block, waiting for a byte to be received. In actual operation, the
byte may never be sent due to a failure in communication, so the subroutine could block
forever. As a general rule, you want to avoid creating routines that could block indefinitely.

A better approach would be to check to see if a byte has been received and is waiting to be
read. If so, return it; if not return from the subroutine, but indicate that a byte was not
available. In an Assembly Language routine, it would be typical to use a condition-code
register bit, such as Carry, to indicate whether or not a new byte has been received.
However, in C, that isn’t a workable plan. Instead, you may want to return a NULL
character (ASCII code 0), as that’s a very unlikely character to have appearing in a
transmitted file. (In some protocols, the actual transmission of a delimiting character like
this is indicated by sending the character twice; the programmer would need to do an error-
trapping routine that would recognize this condition and handle the character as a special
case.) In our case, we’ll simply write our main program so that it treats any NULL returned
as an indication that no valid character is present, so we’ll ignore that result.

At this point, you will want to write the following functions indicated in your library header
file:

• SCI0_TxChar
• SCI0_RxChar

Once you’ve written these, you can do a loop-back test by running SCI0_RxChar to receive
a character from your computer’s keyboard, then sending that character by running
SCI0_TxChar to send the character back to your computer, operating as a “dumb terminal”.
The software you will likely be asked to use is called Tera Term Pro.

Terminal Emulation
This is your chance to make a highly-advanced and super-fast computer act like a 1960’s
remote terminal, designed to allow mere mortals to communicate with main-frame
computers like the UNIVAC! Here are a couple of pictures of real terminals, which you are
going to emulate. The one on the left uses paper instead of a monitor!

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 98

The term “dumb terminal” was coined to indicate that, in this configuration, your computer
will be doing nothing other than sending and receiving ASCII characters, just like the
terminals shown on the previous page. Of course, since our computers are multi-tasking
devices, they will actually be doing a gazillion things in the background; however, the
terminal emulator window will not be doing anything other than acting as a dumb terminal.

Inside Tera Term, you will need to set up a number of characteristics so that the dumb
terminal can communicate with your 9S12 development kit. These are found in the “Setup”
menu.

First, you need to make Tera Term into the right dumb terminal. Here’s the “Terminal”
setup you want:

Next, you’ll probably want your “Window” setup to look like the following:

The following “Font” setup makes your display fairly readable:

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 99

Last but certainly not least, you need to do the following “Serial Port” setup:

This setup matches the settings for the SCI0_Init19200 initialization routine in your library.
If you want to communicate at a different baud rate, this is where you would select that.

Before you leave Tera Term Pro, you will want to save these configuration changes so that
you don’t have to do this every time you run the dumb terminal.

From the “Setup” menu, select “Save setup…” and simply accept the defaults. This will
overwrite the default setup file with your new settings, and Tera Term will start up the way
you want it to for the rest of the semester (unless your computer gets re-Ghosted).

Once you’ve done this configuration, have written a program that initializes the 9S12X,
have connected your 9S12X board to the computer using a 9-pin Comm cable, and have
written a small program to receive a character from the keyboard and transmit it back to
the dumb terminal, you should be able to verify that your functions are working properly (or
not). Have fun!

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 100

SCI0_TxString
Quite often, you’ll want to send multiple characters to the dumb terminal (or to other
peripherals or equipment that’s looking for ASCII characters). For example, you probably
don’t want to send the characters for the previously-listed escape sequences one-by-one
every time you want to control the terminal. As with the LCD, the best way to send these
sequences, as well as longer strings of characters, is by using a null-terminated string of
ASCII characters. The SCI0_TxString function you will be creating can handle strings of any
length, since it is expecting a string that ends with the NULL character (ASCII code 0). The
routine transmits each character, then checks to see if the character was a NULL. If it is a
NULL, program execution exits the function.

You should be able to generalize what you did with LCD_String(*) to develop
SCI0_TxString(*). If you need further assistance, your instructor can give you direction.

The simple string management program shown on the next page should be a good
reference for your work with the SCI port. Here are some pertinent things to notice:

1. The author’s version of SCI0_Init19200 is shown, from which you can build the other
initialization routines required. Although it’s probably not necessary for most of what
you’ll be doing, you’ll notice that the contents of the upper three bits of the sixteen-
bit baud rate register SCI0BD have been preserved, in case there’s a chance that the
infrared settings might be significant. They really shouldn’t be, because this SCI port
is connected to a wired comm port.

2. Notice that you need to calculate the value for the baud rate register, SCI0BD.
3. Note that there was no need to add a NULL character to the end of the string – the

IDE does that automatically. However, in the declaration of the array size, room had
to be provided for the NULL.

4. The undeclared for (;;){} loop provides an endless loop, which shows up on the
screen as an endless printout of the string.

5. Notice that occasionally, there’s an unexpected letter appearing on screen. These
characters have been entered from the keyboard using SCI0_RxByte(). Note that we
read the SCI port, check to see if it contains a valid character from the keyboard,
and if it does, we print it.

Note: The header information shown on the next page hasn’t been updated to show who
wrote it, when, and what it does. As Stan and Jan Berenstain once famously said “That is
what you should not do. So let that be a lesson to you.” (The Bike Lesson by Stan and Jan
Berenstain, 1964 Random House, Inc.)

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 101

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 102

The VT100/VT52 Terminal
The terminal program on the PC side of the connection should now be set up to emulate a
VT100 terminal. These terminals were able to display received 7-bit ASCII characters,
manage a cursor, and send characters from a keyboard through an RS-232 connection.

Escape Sequences
Some sequences of multiple characters are interpreted in a special way by the terminal, and
are not displayed. Instead, these sequences trigger a change in the terminal. They may
alter the cursor position, character or background color, and other terminal settings.

The character sequences the VT100 terminal recognizes are typically ‘escape sequences’.
The name comes from the fact that these character sequences begin with an escape
character. You will use several different escape sequences to control the terminal.

The following small table shows a few of the sequences of interest. A more complete, but
not entirely trustworthy, set is available in Moodle.

A word of caution: Not all terminal emulators produce the same results from the escape
sequences, even if they claim to emulate the same terminals (e.g. VT100). You will
probably soon find that a number of the sequences you try within Tera Term don’t do what
you want them to do. HyperTerminal will produce yet other results. Trial and error will,
hopefully, bring you satisfactory performance.

Escape Sequence (<esc> means
escape character, or 0x1B)

Function

<esc>[2K Erase Line

<esc>[y;xH or <esc>[y;xf Set Cursor Position (y = row, x = column)

<esc>[31m Set text red

<esc>[?25l (that’s lowercase L for LOW) Cursor off

<esc>[?25h (that’s lowercase H for HIGH) Cursor on

Previously, you created ToUpper() and ToLower() routines. One example of using these
routines would be in handling the response to a “Y/N” question, received using
SCI0_RxChar(). The operator could just as easily enter ‘y’ instead of ‘Y’, or ‘n’ instead of
‘N’, so your program should respond to either case. This is easily done by simply running
the response through ToUpper() and responding to the uppercase value returned.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 103

The next page is a screen capture of a simple “adder” that demonstrates, among other
things, the way in which ASCII values from the keyboard need to be manipulated in order to
do simple math, and how the results need to be manipulated back to ASCII codes in order
to display them in a manner that is meaningful to human operators. Here are some
pertinent things to notice:

1. In the string declaration, the escape characters ‘\r\f’ are interpreted as a carriage
return and line feed respectively, moving the text display on screen down to the
beginning of the next line.

2. The string array size is declared to be one larger than the number of characters, to
allow for the NULL terminator.

3. Single characters can be sent to the terminal by putting single quotes around them.
4. Special characters can be sent to the terminal as hexadecimal numbers, or, for that

matter, binary, octal, or decimal numbers. 0x0d and 0x0a are the ASCII codes for
carriage return and line feed respectively.

5. In order to add two numbers together, they must be true numbers, not ASCII codes;
In order to display a true number, it must be converted to ASCII for the terminal.

6. This simple program doesn’t check for non-valid (i.e. non-numeric) entries. A better
program would reject these and would wait for a valid input.

7. Note that the larger hex values (A – F) can be entered as either lowercase or
uppercase, and are interpreted correctly.

8. This simple routine can’t handle results that are larger than a single digit (i.e. 0x10
up to 0x1E, which is 0x0F + 0x0F). Only the lower digit is displayed. A better
program would send two characters, or would at least trap the error.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 104

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 105

Floating-Point Math in ANSI C
Up until now, we’ve been doing mathematical operations using integers, which have no
fractional component. The 9S12, operating in ANSI C, can do floating point math, as well.
One reason we’ve been avoiding this until now is that floating point math requires fairly
large amounts of memory, takes a lot of clock cycles, and involves some fairly complex
functions. However, there are times when it just makes sense to work with real numbers
rather than integers, as long as you are aware that download times will increase, you might
run out of memory, and most everything is going to slow down.

To begin with, when you are setting up a new project, you need to specify that you are
going to be using floating point math, and in which format. One of the screens you’ve been
going to in order to select the memory model also gives you the option of working in
floating point:

From experience, your instructors recommend choosing “float is IEEE32, double is IEEE32”,
as shown above: the other option has been problematic.

Also, in the skeleton file used when creating a new project, you will probably need to invoke
the ANSI C <stdio.h> library, which, among other things, helps with formatting strings,
and, depending on what mathematical functions you intend to use, you may also need to
invoke the <math.h> library.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 106

<stdio.h>
Here are the functions available in <stdio.h>. You can find it at
C:\Program Files (x86)\Freescale\CWS12v5.1\lib/hc12c\include\math.h.

fopen fclose fgetpos
fsetpos freopen fseek
scanf remove ftell
sscanf rename rewind
vsscanf tmpfile fgetc
puts tmpnam fread
printf fflush fwrite
fprintf setbuf fgets
vfprintf setvbuf fputs
sprintf fscanf
vsprintf ungetc
set_printf gets
vprintf

Since there’s no file structure, or even mass storage device, on your microcontroller board,
none of the file-related commands are of any direct use to you, and since your
microcontroller board doesn’t have a keyboard or monitor, none of the standard user-
interface device (console) commands do anything directly, either. So, what use is this
library to you? You could potentially set up your board with some “Standard I/O” devices
(keyboard interface, video interface, external memory), and then you would have to define
the parameters of these devices so the board knew what to access using the console
commands. This would be a significant challenge (beyond this course), but not impossible.

However, there are other functions in this library that are of direct use to you. Commands
related to string manipulation fit this category; “sprintf”, for example, is a function you can
use to format strings, particularly those with floating-point numbers in them.

Here’s an informative example from a program that has previously received a 12-bit 2’s
complement value from the X channel of an accelerometer, placed into the variable “iX”:

Note the following:

• All sprintf returns is a flag to indicate a valid result – hence the “if” statement.
• The variable “DispString” was declared previously in the setup for this program as a

21-byte char array, and is used as the target for sprintf. (21 provides enough room
for the 20 characters on a line of the display, followed by a NULL terminator.)

• The contents of the string are contained inside double quotes.
• The “%” symbol indicates that formatting commands for a fillable field follow.
• “+” indicates that the sign of the number will be shown, both positive and negative.
• “4.3f” indicates that we want to display a floating point number made up of four

digits, of which three will follow the decimal point.
• In the calculation of the value to be placed in the field, we’re dividing by 1000.0 (not

just 1000) to do an implicit cast of the result into floating point format.

Go here for a complete description of the “sprintf” command:
http://www.tutorialspoint.com/c_standard_library/c_function_sprintf.htm

http://www.tutorialspoint.com/c_standard_library/c_function_sprintf.htm

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 107

<math.h>
This library has a lot of useful functions in it, as shown below.

frexp pow asinf
ldexp sqrt acosf
modf ceil atanf
frexpf floor atan2f
ldexpf fabs log10f
modff fmod expf
cos sincos logf
cosh sncsh powf
sin sqrt_r sqrtf
sinh pow_i ceilf
tan exp_r floorf
tanh log_r fabsf
asin cosf fmodf
acos coshf sincosf
atan sinf sncshf
atan2 sinhf sqrtf_r
log10 tanf powf_i
exp tanhf expf_r
log logf_r

Again, a lot of information about the use and formatting of each of these is available on the
Internet when you need to use them.

Of all the functions in this library, you’re most likely to use the trigonometry and
exponential groups. It should come as no surprise that the trig functions are radians-based,
so, if you want to work in degrees, you’ll need to do the appropriate conversions.

=
π

180RadiansDegrees

The math.h library provides a value for π, but it’s a bit awkward: _M_PI. You might want to
assign that to a slightly more workable variable name – just make sure it’s a float. There
are other constants available, too. A complete listing can be found in the header file itself,
under C:\Program Files (x86)\Freescale\CWS12v5.1\lib/hc12c\include\math.h.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 108

Interrupts
Up to this point, you’ve been using a technique called “polling” when designing your
software for the 9S12X. In this system, you check each peripheral on a regular basis to see
if it needs servicing. So, when you use your switches, you check to see if any of them are
pressed as part of your program; when you are connected to a dumb terminal through the
SCI port, you check to see if a key has been pressed each time you go through that part of
your program.

Interrupt programming unleashes a level of power you’ve experienced in your C#
programming – the ability to have one process running and having other processes
temporarily take control when another event occurs, such as the click of a mouse button.

Here’s an analogy to show you the difference between polling and interrupts. In a
classroom, an instructor can constantly walk around the lab benches asking each student,
one at a time, if they need help: That’s polling, and it keeps the instructor busy all class
period long. Or, the instructor can sit at his desk getting caught up on *marking*, while
students put up their hands to call him over when they need help: That’s using interrupts.

With polling, there’s no problem figuring out where to go next in the program: everything is
linear, and if the routine that requires your attention is in a subroutine, the program always
leaves from a defined point to go to the subroutine, and always returns to where it left.

However, an interrupt can happen at any time and can be completely unpredictable. The
program control must be able to leave what it’s doing, service the interrupt, then pick up
where it was at as if nothing had happened in between.

Interrupts in S12XCPU Assembly Language
Although in this course we won’t spend more time programming in S12XCPU Assembly
Language, we will revisit it here in order to gain an understanding of how interrupts work.

This is a good time to compare what’s required, in S12XCPU Assembly Language, for
branches, subroutines, and interrupts.

Action Going To Returning From

Branch Jump to branch address N/A

Subroutine Stack the return point address
Jump to subroutine address

Retrieve return point from stack
(pushes and pulls handled in code)

Interrupt Stack everything
– return address, Y, X, A, B, CCR

Retrieve everything – program
continues as if nothing happened

It’s also important to know how to get to and return from these types of routines:

Action Going To Returning From

Branch JMP, BRA, LBRA, BRSET, BRCLR,
BEQ, BNE, BCC, BCS, BVC, BVS,
BGE, BGT, BLE, BPL, BMI, BLT,
BHI, BLO, BHS, BLS, DBEQ,
DBNE, IBEQ, IBNE

N/A

Subroutine BSR, JSR RTS

Interrupt Vector table RTI

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 109

Note: Since everything is retrieved from the stack when returning from an interrupt, you
can’t use A, B, D, X, Y, or any of the condition code register bits to return information from
an interrupt. You must place information in global variables instead.

So, how do interrupts work? Each item that can be used as an interrupt will have an
interrupt enable, an interrupt flag, and an interrupt vector address associated with it. The
interrupt vector is a hard-coded address that the microprocessor uses to determine where
to transfer control to when a particular interrupt flag is set. The interrupt vector must be
programmed with the address of the desired routine (called an interrupt service routine or
ISR).

Here’s how to set up a program to use an interrupt:

1. Write the interrupt service routine (ISR), preferably collected with other ISRs under
a header that sets them apart from the rest of the code.

2. Start the ISR with an informative label that the Assembler will interpret as the entry
address.

3. Inside the ISR, make sure you clear the interrupt flag that brought you here. That
usually means writing a “1” to that flag in the associated flag register.

4. Make sure you exit the ISR with RTI – never try to exit any other way!
5. Associate the starting address of the ISR with the appropriate Interrupt Vector.
6. In the initialization of your program, enable the specific interrupt for this routine.
7. Enable the maskable interrupts with CLI. (Incidentally, SEI turns interrupts off.)

The following code snippets show how to set up and use the SCI Receive interrupt to read a
character from the keyboard and echo it to the screen, while spending the remainder of the
time in a power-down WAIT condition.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 110

The screen capture below shows just the top of a three-page listing of interrupt vectors,
enough to show where the microcontroller jumps to if an interrupt occurs on Timer
Channel 0, which we’re using in this example:

The default Vector base is $FF00, so you would add this to the Vector Address column
value.

It’s possible to have multiple Interrupt Service Routines running simultaneously. The code
shown on the following page counts up endlessly on the bottom four digits of the seven-
segment display, maintains a timer, grabs characters from console when interrupted by the
SCI0 Receive Interrupt, and clears the display in response to an interrupt generated on a
switch connected to bit 0 of PortJ.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 111

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 112

Interrupts using ANSI C
Interrupt handling in ANSI C is different from handling interrupts in Assembly Language, as
we rely on something called pragma interrupt handling. Also, since we’re not allowed to
pass parameters to or from an interrupt (remember that everything gets stacked upon entry
and then everything gets pulled back off the stack at the end of the ISR), we’ll have to use
global variables for anything we want to send to or receive from an interrupt routine.

Recall that there are seven things we need to do to handle an interrupt properly:

1. Write the interrupt service routine (ISR), preferably collected with other ISRs under
a header that sets them apart from the rest of the code.

2. Start the ISR with an informative label that the compiler will interpret as the entry
address.

3. Inside the ISR, make sure you clear the interrupt flag that brought you here. That
usually means writing a “1” to that flag in the associated flag register.

4. Make sure you exit the ISR properly (not so hard in C).
5. Associate the ISR with the appropriate Interrupt Vector.
6. In the initialization of your program, enable the specific interrupt for this routine.
7. Enable the maskable interrupts.

For the SCI port, the most useful interrupt is the Receive Data Register Full (RDRF), which
we have used in our polling routines. Since people type pretty slowly, compared to the
processing rate of a microcontroller, and since people tend to take relatively long breaks to
think about what they are typing or to get a coffee, leaving the microcontroller in a blocking
routine while it waits for a new character is an incredible waste of time and computing
power.

If you don’t want to try and find the Vector Handlers in the 1300 page data sheet, you can
open up the “mc9s12xdp512.h” file that always shows up in your projects when you make
the correct initial selections. Here’s a snippet out of that file, which should be generally
useful for the interrupt-driven parts of this course.

Here are some important facts to use in setting up an SCI0 Receive interrupt routine:

• SCI0 interrupts are handled by “VectorNumber_Vsci0”. (Be careful, as the cross-
compiler is case sensitive.)

• RDRF is bit5 of SCI0SR1.
• Flags are cleared by writing a “1” to them.
• The receive interrupt enable, RIE, is bit5 of SCI0CR2.
• The interrupts you’ve selected are ultimately enabled using “EnableInterrupts”, which

is the equivalent of “CLI”.
• You can use “asm WAI” to put the microcontroller to sleep, waiting for an interrupt.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 113

Points 2 to 5 of the things that are needed for an interrupt-driven program are done for you
in the following screen capture. Notice, in particular, the syntax of the declaration of the
vector handler and its associated interrupt service routine – the top line of this code. The
function is void(void) because everything is placed on the stack and retrieved from the
stack. If you want to have the ISR work on values or provide results, use global variables
as the memory access points.

At this point, you should be able to write an ANSI C equivalent of the “receive and echo”
program shown earlier in S12XCPU Assembly Language.

By the way, you may have noticed that, in one of the ISRs the flag was cleared at the
beginning of the routine and in the other the flag was cleared at the end. This doesn’t
matter with Motorola-based microcontrollers, as the interrupt is automatically disabled as
long as the interrupt is being serviced.

Don’t forget points 6 and 7! They need to be done outside of the ISR.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 114

Input-Driven Interrupt
Often, we want our microcontroller to respond to simple external events, such as can be
detected by a logic change on an input.

On our board, Port J can be used to generate interrupts in response to a change in the
signals connected to it.

The microcontroller board has PortJ0 and PortJ1 connected to push-button switches. Of
course, you could also wire one or both of these to a circuit of your own design, or an add-
on peripheral, that generates binary logic levels as external interrupts.

The following is from page 819 of the “Data Sheet”:

In order to use PortJ0 and/or PortJ1, we need to define them as inputs, using DDRJ.

Also, we need to specify if we want interrupts to be generated on a rising or falling edge of
the input signal using PPSJ, where 0 is for a falling edge and 1 is for a rising edge.

Once the port is set up, we can enable the interrupt for our particular channel using PIEJ.

Interrupt events will be reported using PIFJ, which will have to be cleared before further
interrupts can be detected.

The Interrupt Vector for PortJ is $FFCE, and the Interrupt Vector Handler for ANSI C is
VectorNumber_Vportj.

There are some distinct advantages to using an interrupt service routine for binary input
signals, particularly if they are generated by switches.

For one, we don’t need to worry about long activation time for the switch, because a single
event gets us into the service routine, and further events won’t have any effect until we
clear the interrupt flag and exit the ISR. Holding the switch down doesn’t generate any
more edges, so no further action is detected until the switch is reactivated. Also, events are
only initiated by the edge we’ve chosen, so, for example, if we’ve chosen a rising edge to
detect switch press, the falling edge for the switch release condition will be ignored.

Switch bounce is also significantly reduced, as the switch will probably stabilize during the
operation of the interrupt service routine. If your switch bounces upon release, however,
you may get an unwanted event after the service routine has finished its operation, which
you may need to find a solution for. This will probably vary from one application to another.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 115

Accurate Timing
Up to this point, you’ve created simple but not necessarily very accurate timing delays using
counters and loops. There are better ways to do this!

Periodic Interrupt Timer (PIT)
If all you’re looking for is something to clock a repetitive sequence very accurately, the
Periodic Interrupt Timer is a good choice. As the name indicates, this timer runs on
interrupts, and, when set up properly, will run an interrupt service routine at exact, periodic
intervals. The specification document for the 9S12XDP512 provides this block diagram:

From this, we can see that there are two 8-bit counters (“Micro Timers”) running from the
8 MHz bus clock. Each of these can be loaded with a different countdown value using
registers PITMTLD0 and PITMTLD1. These counters can be connected to any of four 16-bit
timers using a multiplexer register (PITMUX), and these counters further divide down the
clock signals, based on values loaded into PITLDx, where “x” is 0 through 3. When these
counters run down, the generate interrupts that can be detected by the 9S12 core.

To determine the period of a particular PIT timer, use the following formula:

(1)*(1) / busT PITMTLDy PITLDx f= + +

The frequency, if you want it, is just the inverse.

We won’t use any more than one interrupt timer at any given time in this course, because,
the way the 9S12XDP512 is set up, it can’t respond to more than one interrupt at a time,
and it’s quite difficult to set up two timers that don’t occasionally fire on the same clock
cycle, in which case the lower priority interrupt will be missed. (If you’re interested, the
priority of interrupts and ways to handle nested interrupts are discussed in the specification
document and ad nauseum online.)

The registers you will need to deal with for simple operation of a single channel, in this
case, channel 0 based on microtimer 0, are as follows:

PITCE four lower bits enable corresponding channels
PITMUX a 0 or 1 in the bit matching your channel connects to microtimer 0 or 1
PITCFLMT PIT control register (upper three bits enable, control debug activity)
PITINTE 1 in lower four bits enables corresponding channel
PITMTLD0 microtimer count down value
PITLD0 timer count down value

The interrupt vector for Channel 0 is VectorNumber_VPit0.

The next page shows a 1.0 s periodic interrupt timer running a BCD counter on the seven
segment display. Just remember, when setting up your values, that the microtimer is 8-bit
(0 to 255) and the timer is 16-bit (0 to 65,535).

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 116

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 117

Enhanced Capture Timer
For more control (and the possibility of connecting timer channels to output pins), the
9S12XDP512 chip contains a built-in enhanced timer module, with a great deal of
functionality and flexibility. The block diagram for the timer module is in the 9S12X data
sheet. In the current version, this is on page 310. Here it is for quick reference:

In other versions of the 9S12 microcontroller, there are multiple enhanced capture timers
available. However, in the MC9S12XDP512, the manufacturers made room for multiple CAN
Bus modules by removing all but one of the timer modules. In those versions of the
controller, you need to specify which module you want (e.g. TIM0_?????). We don’t have to
do that with this version of the controller.

At the core of the timer module exists a 16-bit counter, the current count value being
available at the 16-bit location TCNT (for us, this is at addresses 0x0044 and 0x0045). This
counter simply counts up as long as the timer module is enabled. The points of interest
here are that this is a 16-bit register (occupies two bytes), and a 16-bit read takes an
instantaneous snapshot of the register’s contents, while the counter itself runs on.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 118

There are a number of registers that need to either be written to for control or read from to
determine the current status of the timer module. Here’s a screen-shot showing all of the
available registers. Pretty daunting!

Clearly, we can only touch on a small subset of all the capabilities of this very important
module, so let’s get started.

Initially, we will be working with seven of the registers:

TSCR1 Timer System Control Register 1
TSCR2 Timer System Control Register 2
TIOS Timer Input Capture/Output Compare Select
TCTL2 Timer Control Register 2 (This is half of a 16-bit TCTL register)
TCNT Timer Count Register
TC0 Timer Input Capture/Output Compare Register 0
TFLG1 Main Timer Interrupt Flag 1

Once we have the timer working, you might be interested in checking out the functionality
of Input Capture, which requires TCTL3 and TCTL4, and reports the clock value when an
external event happens. You could also try Pulse Accumulation, which requires PACTL and
the 16-bit Pulse Accumulator Count register PACN32, and counts the number of external
events detected during a period of time. Input capture can be used to determine the
period of a periodic waveform, whereas pulse accumulation can be used to determine the
frequency of a periodic waveform. Of course, there are a lot of other applications for
these, too, such as determining revolutions per minute (RPM) of a rotating shaft or the time
between two external events such as the time between front tires and back tires of a car
crossing a sensor to determine its speed.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 119

Timer Initialization
To initialize the timer, we need to do the following:

1. Enable the timer module.
2. Determine the rate at which we want the timer to count up, based on a prescaler

from the main bus clock.
3. Set up the timer to operate in “Output Compare” mode for one of the 8 channels –

for now, we’ll use IOC0.
4. Connect an output signal to an external pin available on the microcontroller kit.
5. Clear the Output Compare Flag so the timer is ready to announce the first Output

Compare instance.

Here are the registers we’ll be working with in the initialization for Output Compare on
Channel IOC0:

For our basic initialization routine, we want to do the following:

1. Turn on the timer.
2. Set the prescaler so that the timer’s count interval is 8 µs (to begin with).
3. Set up Channel 0 for Output Compare.
4. Connect Channel 0 to its corresponding pin in PortT, PT0, in Toggle Mode.
5. Clear the capture flag for Channel 0.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 120

In your “Misc_Lib.c” library, begin a function to match the following header which should be
in the corresponding “Misc_Lib.h” file:

void TimInit8us(void);

1. Turn on the Timer using TSCR1, but don’t mess up the contents of the other bits in
this register. (You’ll need to OR or AND the contents of the register for this).

2. In TSCR2, you’ll notice that there are only three bits available for the prescaler.
These bits represent the power of 2 that you want to divide the clock frequency by.
Your options, then, are 1, 2, 4, 8, 16, 32, 64, or 128. Dividing the clock frequency
means the same as multiplying the period, so this is also the power of 2 that you
multiply the 125 ns clock period by. So, for the desired 8 µs, we want:

6264
125
8

==
ns
sµ

…so the prescaler should be 6, or 1102.

You will need to create this prescaler without messing up the other bits, so
“OR” in the 1s, and “AND” out the 0s.

Alternatively, you could store the entire thing temporarily, clear out the prescaler
bits in the temporary copy, write the desired values into the prescaler, then OR the
original bits back into the register. You’ll probably find the first way of doing this to
be the easier of the two.

3. Set up TIOS to enable Output Compares on Channel 0. Consistent with other
operations in this microcontroller, a 1 represents output and a 0 represents input.
Again, don’t mess up the other bits in this register.

4. Now to connect Channel 0’s Output Compare events to a pin that we can monitor
with an oscilloscope. Notice that the TCTL register is 16-bit, even though there are
only 8 channels. That’s because each channel has four options available to it, hence
the need for 2 bits. Here’s the table that explains this operation:

We want to toggle PT0 in response to events on Channel 0, so we want to use 012
for the bottom two bits of TCTL2. Again, we don’t want to meddle with the settings
of the other bits in TCTL2, so this will require AND-ing and OR-ing.

5. Finally, we want to clear the interrupt flag associated with Channel 0. For many
peripherals, a flag is “cleared” by “setting” it. In other words, to make a flag go to 0,
you write a 1 to it. Do this to the appropriate bit in TFLG1 using OR.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 121

If you followed the steps above, you should have ended up with a function that looks very
much like the following:

Hopefully, you took the time to go through the preceding steps instead of looking ahead and
just putting this code into your library, because in doing so, you will have learned quite a bit
about the operation of the timer.

At this point, you should be able to use an oscilloscope to see if your initialization routine
worked, because PT0 will be changing states once for each complete cycle of the count in
TCNT.

Why? Here’s a quick explanation. A register called TC0 is compared to TCNT each tick to
determine if an output compare event has occurred on this channel. Since the TC0 register
will be some unspecified value upon startup (most probably $0000), an output compare
event will occur naturally each time TCNT wraps around to that value. This happens every
65536 ticks at 8 µs sec/tick, or every 0.524288 s. So, without us manipulating the value in
TC0, the board will produce a square wave with a period of 1.048576 s, or a frequency of
0.954 Hz. Check to see if that’s what’s happening at PT0, by observing the signal at Pin 9
of the microcontroller using your oscilloscope.

We will typically manipulate the amount of time between output compare events by
changing the contents of TC0 for every desired time period.

If your 8 µs initialization routine worked, add an initialization routine called “TimInit1us”.
This should be very similar to the one you’ve just finished, except for the timing. Make
appropriate changes to match the label. This one should produce a free-running frequency
of 7.63 Hz.

Add another routine called “TimInit125ns”. This one should free-run at about 61 Hz.

Setting the Timer Compare Event Duration
Every time TCNT matches TC0, the corresponding flag is set in TFLG1. If you want to know
when an output compare event has occurred, poll for the event flag in the TFLG1 register.
Another way to handle this, which we will soon investigate, is to enable interrupts and allow
the timer to interrupt the main program whenever the flag is set.

The simplest way to handle an output compare is to repeatedly check for the flag of the
corresponding channel in your code (a blocking delay). Once the event is detected, you
must write a 1 to the corresponding bit to acknowledge it and reset the flag.

For more useful systems, you should check the flag once each time through a loop that
allows you to carry out other functions, such as checking switches or controlling LEDs.
Alternatively, you could use timer interrupts, which we will soon address.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 122

Delays vs. Intervals
We can use the timer in two slightly different ways: individual delays or regular intervals.

Here’s a real-life analogy. You may want to sleep an extra ten minutes before getting up in
the morning. To do this, you check the time, add ten minutes to it, and set your alarm for
the new time. When the alarm goes off, you’ve experienced a ten-minute delay. After
yawning and stretching, you may feel like another ten-minute delay, so you check the clock
again, add ten minutes, and set the alarm to the new alarm time. As a result, your alarm
will go off a bit more than twenty minutes after the original wake-up time. If, however,
you’ve got kids playing in the back yard, you may want to check on them every ten
minutes. In this case, you check the initial time on the clock and add ten minutes to it to
set the alarm. When the alarm goes, you set the alarm to ten minutes past the old alarm
setting (even if you get distracted in between), and as a result you end up checking on the
kids exactly six times for every hour, since the alarm goes off in ten-minute intervals
regardless of how long it takes you to get around to resetting the alarm (assuming you get
to it within ten minutes, that is). We’ll get back to the difference between these two ways
of handling a timer, but we need to know a couple more things first.

Delays

Specific timing delays can be generated by looking at the current TCNT value and adding an
offset that matches the desired delay time. If you write this value into the TC0 register, the
event will occur at precisely the desired delay time. With a delay, the amount of time
required to set up the delay and access it would be additional to the time spent waiting for
the timer, but, unless the delay is extremely short, this is probably insignificant.

Intervals

First, we get the initial value in the counter to set a new target. Then, each time we detect
an output compare, we add the value to the previous target event value instead of to the
current timer value. Since we add the count interval to the previous event value and not to
the current clock value, our interval will be accurate even if we don’t service it immediately.

With the timer, we can perform other tasks of varying length while we wait for the output
compare event to occur. This becomes especially useful when use Interrupt Service
Routines. Since interrupts and interval timing work so well together, we’ll leave a full
discussion of interval timing until later in the course.

Delay Function for Misc_Lib
In your “Misc_Lib.h” header file, you will find the following prototype:
void Sleep_ms(unsigned int); //requires TimInit8us setup; blocking delay

This function is appropriately called “Sleep”, because it will block and wait until the time
interval has elapsed – nothing else, other than interrupt-driven behaviour, will happen once
this function has been called, until the timer runs out. Unfortunately, the micro doesn’t
actually go into low power “sleep” mode, because it’s madly checking the timer module!

Here’s some information necessary to completing this function:

• 1 ms represents 125 8 µs timer ticks.
• Since we don’t know what value is present in the counter (TCNT) when we access

this routine, we will need to read that and add one millisecond (125 counts) to it for
the first interval.

• Once the first interval is set up, we can enter a for loop to handle the rest of the
milliseconds, in which we will clear the flag, wait for it to trigger, and add 125 to the
previous target present in the timer compare register (TC0).

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 123

Again, you can check your work against the following solution:

A good test of this routine would be to set up the program to toggle all three LEDs on the
board after a delay. With an oscilloscope, you could probe the control line for one of the
LEDs to see if the timing is what you expect it to be. Try values like 1 ms, 2 ms, 10 ms,
100 ms, 1000 ms, and 65000 ms (if you can wait that long!). Your results should be
accurate to within the limitations of your oscilloscope.

Notice in the Sleep_ms() routine that the first value for TC0 comes from TCNT, because
when you enter a Delay, you don’t know what the starting time is. Consequently, there will
be a small period of time lost between when you call this delay and when it actually starts,
so repetitive calls of this routine will run a bit more slowly than a true interval timer.

However, notice that inside the loop, the subsequent values are based on the previous
contents of TC0. That makes these true Intervals, because they are not affected by the
processing time for managing the loop.

Interrupt-Driven Timer
Having an interval timer running on interrupts is a great idea. Your program can carry out
any number of tasks, either dependent on or independent of the timer, without needing to
poll the timer module to see if the interval is over.

The following example creates an interrupt-driven timer on Timer Channel 0. For an
S12XCPU Assembly Language version of this code, look back to the code following the
introduction to interrupts for the SCI receive operation.

Here are steps 1 to 5, written into the part of the skeleton file dedicated to ISRs:
/**/
// Interrupt Service Routines
/**/

interrupt VectorNumber_Vtimch0 void TimerInterval(void)
{
 TC0 =(int)(iTimeVal+TC0); // next time
 TFLG1 |= 0b00000001; // acknowledge interrupt
}
Notice the declaration statement in the top line: “VectorNumber_Vtimch0” is interpreted by
the compiler using the MC9S12SDP512.c file to point to the correct interrupt vector for
Timer Channel 0. “TimerInterval” is the name of our ISR. Notice it is “void (void)”, since
we can’t pass parameters to or from it.

We tell the compiler to cast the result of “iTimeVal+TC0” to int, because the compiler knows
the result could be bigger than two bytes, and will give us a warning otherwise.

After clearing the flag, we simply end with a curly bracket, and the compiler knows to use
RTI to end the routine. So, that’s five out of the seven requirements.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 124

Back in the main program, we need to enable the interrupts (steps six and seven), and we
also need to make sure the iTimeVal variable is global.
 TIE |= 0b00000001; /*enable channel 0 interrupts*/
 EnableInterrupts;
Now for the iTimeVal variable: As it sits, it is a global variable, so we should be able to use
it without any changes. However, in case there’s a chance it could be changed by the
program during operation, it might be wise to put “volatile” in front of “int” to prevent it
from being mangled by an interrupt occurring while it is being changed.

The following endless loop watches for the press of the MID switch, one check per timer
cycle, as established in the ISR on the previous page:
 for (;;)
 {
//main program loop
 if(SwCk()==0b00000001)
 {
 PT1AD1&=0b00011111;
 }
 else
 {
 PT1AD1+=0b00100000;
 }
 asm WAI;
 }

The “WAI” command puts the micro to sleep, waiting for the next interrupt from the timer.
Unlike an endless loop, the WAI command actually puts the microcontroller into a low-power
state, so it conserves energy, which is particularly important for a battery-operated
application.

The following page shows the code snippets discussed above all together as a single
printout.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 125

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 126

Real-Time Loop
(Optional topic) One formalized use of interrupts is Real-Time Loop Multiplexing. Unless
your instructor has extra time available, you probably won’t do an exercise on this yet –
wait until the end of the semester, when you have more peripherals to work with. However,
you should know how this is intended to work.

The idea is to have just one interrupt – a regular timer that establishes the loop interval.
During each interval, a set number of tasks are handled in order, then the microcontroller is
put into a power-down WAIT condition until the interval timer’s interrupt occurs. Here’s an
example, shown first in S12XCPU Assembly Language, then in ANSI C.
RTL:
 JSR SevSegTask
 JSR SecTask
 JSR ADCDACTask
 JSR VoutTask

 WAI

 BRA RTL

;**
;* Timer Interrupt Service Request *
;**
TIM_ISR:
 LDD #1250 ;10 ms interval
 ADDD TC0
 STD TC0 ;new interval
 BSET TFLG1,%00000001 ;clear interrupt
 RTI

The four tasks are in carefully-designed subroutines, and are accessed during each interval.
The “WAI” command puts the microcontroller into a low-power sleep mode, but it still
responds to the timer compare interrupt, which wakes it up and sends it to the beginning of
the real-time loop.
for(;;)
{
 SevSegTask();
 SecTask();
 ADCDACTask();
 VoutTask();

 asm WAI;
}

//***
//* Timer Interrupt Service Request *
//***
interrupt VectorNumber_Vtimch0 void TimerInterval(void)
{
 TC0 += 1250; // next time
 TFLG1 |= 0b00000001; // acknowledge the interrupt
}

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 127

Of course, for this system to work, the total time taken by the task subroutines must be less
than the time interval.

This can be handled two ways.

• One is to make the interval long enough to handle the maximum time required by all
the tasks. Sometimes this is unrealistic, and results in jittery code management.

• The other is to find ways to break up tasks that occasionally have long bursts of
activity into smaller pieces. For example, if one task occasionally sends a long string
of text to a dumb terminal through the SCI port, consider sending the string one
character at a time, or maybe no more than 10 characters at a time, until the entire
string is sent. This would require putting the string into a buffer and keeping track
of the current location in the buffer.

A well-planned real-time loop multiplexing system is the perfect application for a
microcontroller acting as the brains for a repetitive system, such as the “computer controls”
in an automotive fuel injection and ignition system.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 128

Input Capture and Pulse Accumulation
(Optional topic) The timer pins can be used to provide timing information from outside
events to the microcontroller. There are two ways we might want the microcontroller to
respond to outside events: We might want to know how much time has elapsed since the
last event (Input Capture) or we might want to know how many events have occurred over
a set period of time (Pulse Accumulation).

Input Capture
Input Capture is a very simple procedure. Once a channel is configured as an Input Capture
pin, each time an electrical event occurs on that pin, the current value of the internal clock
is stored in the 16-bit Timer Compare (TCx) register associated with that pin. The usual
initialization steps are required – setting up the clock speed and enabling the clock. In
addition, we need to set up the channel we’re using for input capture. This involves TIOS,
which we previously used when we set up our timer channel for Output Compare.

This time, we want Channel 7 to be an “Input Compare”, so it should be a 0.

Another parameter that should be controlled is the Input Capture Edge – sometimes you
want to count when the signal goes from LOW to HIGH (rising edge) or when the signal
goes from HIGH to LOW (falling edge). Sometimes, you might want to detect all changes,
rising or falling (incidentally, this would double the frequency of a square wave). This
involves Timer Control Registers 3 and 4 (TCTL3 and TCTL4).

There are two bits associated with each channel, since there are four possible options.

The Input Capture channel indicates that an event has occurred by setting the
corresponding bit in the Flag register, TFLG1. As usual, you will need to clear this flag
before you can wait for it to appear again.

The following page shows a code snippet that displays the period, in microseconds, of a
signal connected to PT7 (pin 18 of the microcontroller).

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 129

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 130

Pulse Accumulation
Pulse accumulation means to count the number of incoming events that occur over a time
interval. As you may have deduced from the previous exercise, Input Capture provides
information that directly relates to a signal’s period. Pulse accumulation is the inverse: it
tells us information that directly relates to a signal’s frequency.

To do a pulse accumulation, you will need two timer channels: one to set up the time
period over which you wish to count events, and another to count the events that occur in
that time period.

We’ll just use routines we developed previously to set up the required time period, so that
means Timer Channel 0 will be used for that.

For the Pulse Accumulator, there are a number of options. The MC9S12XDP512 has four
8-bit Pulse Accumulators connected to Timer Channels 3 through 0, or, in a different mode,
it has two 16-bit Pulse Accumulators connected to Channels 7 and 0. The easiest one of
these to work with, and the one that doesn’t interfere with our time period counter, is the
16-bit Pulse Accumulator A, connected to PT7. Here is its control register, PACTL:

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 131

We will need to enable Pulse Accumulator A. We also typically need to tell it that we’re
going to use it as an Event Counter. We also need to indicate whether it will respond to
rising edges or falling edges, and how we will use the clock source.

It’s fairly obvious that this pulse accumulator can be used in a lot of different ways. We will
just use it in its simplest mode: responding to a rising edge, using the timer prescaler as
the counter clock. At this point, we aren’t using any interrupts, so we’ll inhibit the two
interrupts. Hopefully, you’ve determined that we want to put the value 0b01010000 into
PACTL (the first bit isn’t used, and is always 0).

Once the Pulse Accumulator is set up, we need to set up our regular clock, clear the
contents of the Pulse Accumulator register, and whenever the clock indicates that the time
period is up, we read the Pulse Accumulator Count Register (16-bit) and reset it to zero for
the next count. The Pulse Accumulator Count register is the 16-bit combination of PACN3
and PACN2. In the mc9s12xdp512.inc file, they provide us with the option of doing a 16-bit
read of PACN3 or, with the same functionality, PACN32, an alternate name that probably
helps you remember it’s a 16-bit register. Here’s a bit of code that counts events on PT7
(pin 18) for a full second, then displays the frequency, in Hz, on the seven segment display.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 132

A To D Conversion
The 9S12XDP512 has two fairly complex Analog to Digital Conversion blocks. Here’s the top
left corner of the block diagram, which we’ve looked at previously.

Notice that PAD00 to PAD07 are associated with ATD0, and PAD08 to PAD15, the pins that
are connected on our board to the LEDs and Switches, could also be attached to ATD1. So,
of the two available converters, we’re going to be using ATD0.

This peripheral is highly configurable, and can do a lot of things. Again, we’ll just scratch
the surface of its capabilities.

Here are some of its features:

• It can run in single input or multiplexed input mode. In other words, it could be
measuring up to 8 external voltages simultaneously.

• It can sample on command or it can operate in continuous scan mode. This means
you can either ask for a sample and wait for it, or you can have samples available all
the time for faster reading.

• You can ask for multiple samples from one channel, one sample from each of the
channels, or a number of samples from a number of channels (within limits!).

• You can choose where the results end up, since the result registers aren’t directly
tied to the input channels. In one mode (FIFO) it continuously wraps through the
channels placing the next available value in the next output register; in another
mode, it always starts at result channel 0 and runs until it gets to the last result
you’ve asked it for; it can also start filling at a result register of your choice,
wrapping around until it gets to the last result you’ve asked for.

• Sampling can either be clock driven or initiated by external trigger events.
• The results can be either 10-bit or 8-bit. 10-bit is better: just remember to read a

two-byte word to get the result!
• The reference voltages, both top and bottom, can be set using external circuitry. In

our case, VRL is grounded, and VRH is connected to the output of a REF02 that has a
trimmer potentiometer connected to it. We’ll set this to 5.120 VDC to provide a nice
step size.

• The sample rate is selectable. Fast sample rates allow for high-speed signals, but
slow sample rates are more accurate.

• The input buffering of the signal is configurable.
• The data format is configurable. You can select unsigned or signed values (Single

quadrant or 4-quadrant), and left or right justified values.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 133

The block diagram for ATD0 shows some of the capabilities of this converter, along with the
internal devices that make possible these capabilities.

Setting up VRH
In other courses, you’ve come to think of the REF02 integrated circuit as a fixed 5.0 V
reference. The designers of the IC knew that it would be very difficult to make all of their
products produce exactly 5.0 V, so they included a TRIM pin that can be used to adjust the
output slightly. We have taken advantage of this feature, and have incorporated an output
trimming circuit that can be used to set the REF02 output to 5.120 VDC, which gives us a
useful step size. With a 10-bit A to D converter, the step size is

stepmV
V

StepSize n
ref /000.5

2
120.5

2 10 ===

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 134

Here’s the circuitry involved. The capacitors are there to filter out noise and variations in
the power supplies. What’s important to our discussion is VR3, the trim potentiometer.

On your board, you will need to connect a digital voltmeter between ground and VREF, and
adjust VR3 to set VREF to 5.120 VDC.

Configuring ATD0
The full details for the registers we’re using are found in Chapter 5 of the “Data Sheet”.
Here’s a summary that includes the ones we’ll be using.

In the datasheet, the registers are named “ATDCTLx”, etc. But since there are two A to D
converters in this controller, we need to insert a “0” after “ATD” in each case to specify that
we’re using ATD0 (not ATD1, which is connected to the switches and LEDs).

Remember DDR1AD1 and ATD1DIEN1? We needed to digitally-enable the inputs in order to
get a digital signal into them. However, to receive analog signals, we need to have DDRAD
and ATDDIEN or, in our case, DDR1AD0 and ATD0DIEN, cleared to LOW for the pins to be
enabled as analog inputs instead. Since the unit defaults to 0, we shouldn’t have to worry
about DDR1AD0 and ATD0DIEN, unless somewhere else in software we’ve set these bits to
“1”. In any case, it’s good practice to make sure the pins are configured correctly.

Your instructor will probably want you to create a library for A to D conversion, called
“ATD0_Lib.c”, with its prototype header file “ATD0_Lib.h”. In this library, the first entry
should be an initialization routine, ATD0_Init().

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 135

Notice in the list of registers that there are six control registers: ATDCTL0 through
ATDCTL5. The first two are for modes we’re not going to use. So, let’s start with
ATD0CTL2 (notice the “0” inserted in the register name). You should probably refer to the
register descriptions in Chapter 5 of the “Data Sheet” to determine what each bit should be
in the following registers, if they aren’t obvious.

• For ATD0CTL2, we want to power up the A to D converter, run in fast flag mode (no
need to write to the flag to clear it), run in wait mode, operate without external
triggering, and turn off interrupts.

• In the “Data Sheet”, it says that, once ATD0CTL2 has been set up and the A to D
Converter has been powered up, we need to wait at least 50 µs before anything else
can be configured. You probably don’t want to be forced to include your Misc_Lib
every time you run the A to D converter, so it makes sense to create a simple delay
using a clock-cycle-based loop. We’ve done this before using “asm” commands to:
1) load an accumulator with a desired number of loops, then 2) execute the “DBNE”
Assembly Language command (three clock cycles) until the counter runs out.

• For ATD0CTL3, we want 8 conversions per sequence, we want the converter to start
at our selected register (which we will soon set to 0) rather than being “first-in first-
out”, and we want the A to D converter to finish conversions before freezing on a
break. This one probably requires a look at the description in the “Data Sheet”:

(continued)

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 136

• For ATD0CTL4, we want to run this as a 10-bit converter, we’ll use four clocks per
sample, and we want each sample to be at least 7 µs. This one definitely needs
some information from the “Data Sheet”:

• For ATD0CTL5, we want our results to be right-justified unsigned values, we’ll run in

continuous scan mode sampling all eight channels, and we want to have the results
of each conversion sequence start at result register 0 so that the result register will
match the input channel.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 137

If you’ve correctly interpreted the information on the previous page, you should have ended
up with something like the following:

Using ATD0
Now that the A to D converter has been initialized, we want to use it. For this, we’ll need to
connect an appropriate signal to the channel of choice, and run a routine that makes the
A to D converter go through a conversion sequence, then reads the resulting digital value.
The minimum requirement for this course is to perform A to D conversions using AN0,
which, as you should verify from the schematic, is connected to Pin 67 through a 1 kΩ
resistor to minimize the chance of damaging this input pin with an incorrect input signal.
On your board, you should be able to see the eight resistors used to protect channels AN0
through AN7, and you should see a pin soldered into the header for Pin 67.

In your ATD_Lib, you will need to write a simple routine called “AtoD_AN0”. It will wait for
the SCF flag (Sequence Complete Flag) which is b7 of ATD0STAT0, then it will read the
appropriate Data Register (in this case, ATD0DR0). Remember that we’re doing 10-bit
conversions, so this result will have to be read as a 16-bit (int) value. Also, we’ve chosen
single-quadrant operation, so the result will always be positive (unsigned).

You will need to write a test routine that reads the input voltage and displays it somewhere,
probably the seven-segment display for simplicity. To verify your results, though, you will
need to write code to do the math and value manipulation necessary to convert the result to
an actual voltage, which you can verify with a digital multi-meter (DMM).

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 138

Pulse-Width Modulation
When the first personal computers hit the market, the best audio they could manage was a
collection of annoying squeaks and beeps. Creative individuals figured out how to make
these squeaks and beeps sound like badly recorded voices and music by varying the
frequencies and duty cycles of the waveforms in a technique called pulse-width modulation.
With the advent of sound cards, those days are now in the past. However, it might surprise
you to know that many of our low-power audio devices (and expensive high-powered audio
amps, as well) use pulse-width modulation with slightly more sophisticated integration and
filtering circuitry to produce high-fidelity sound. This is called Class-D power amplification.

Also, in the early days of remote-controlled toys, motors would either be turned fully on or
off, resulting in jack-rabbit starts and stops, and crazy all-or-nothing turns. Pulse-width
modulation now allows for much smoother motor control, not only for remote-controlled
toys but for industrial processes, automotive devices, etc. Many microcontrollers have
sophisticated pulse-width modulators to allow for programmable control of such devices.
The 9S12X has a highly-configurable eight-channel PWM module. We will only begin to
scratch the surface of the capabilities of this module.

The PWM module is used to create waveforms with programmable period and duty. There
are a number of uses for programmable waveforms, most residing well outside the scope of
this course.

For fun, we’ve connected a speaker to one of the PWM channels of your board, channel 6,
with a jumper to enable you to disable the speaker when you see an angry hulk
approaching. We also have three channels of the PWM (channels 0, 1, and 4) wired to an
RGB LED to allow you to control the resulting colour and brightness of this LED, and we
have channel 3 wired to the backlight of the LCD display to allow you to control that, as
well. The other three channels are available at the general breakout headers on the board.

PWM Channel Function
0 RGB Blue
1 RGB Green
4 RGB Red
3 Backlight
6 Speaker

Using the PWM channel connected to the speaker, you can create waveforms of the correct
period and duty to generate amusing sounds on your speaker. You can use these sounds to
add useful enhancements to your code (key clicks, alarms, start-up sounds, etc.), create
cheap ‘80s style music, or generally drive your lab mates crazy.

The PWM subsystem is fairly easy to get along with, and relies heavily on a series of clocks.
As with most modules on the 9S12X, the PWM subsystem is configured through a series of
registers, shown in a screen capture on the next page to give you a sense of the complexity
of this module. We’ll learn about the registers of interest to you as you need them.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 139

There are eight fairly independent PWM channels in the MC9S12XDP512 – “fairly”
independent, because you can control a lot of characteristics independently; however, the
clocks, although highly configurable, are shared by four channels each, which can be
challenging if you want to control devices requiring radically different timing characteristics.

An additional feature available in the MC9S12XDP512’s PWM module is the ability to
combine (concatenate) pairs of eight-bit PWM channels into sixteen-bit channels. If you
ever need to do this (likely to make extremely long signal periods), you will need to use the
PWM Control Register (PWMCTL). Since this isn’t a common application, you’re left on
your own to research this option if you need it.

Generating Waveforms
The diagram below shows graphically the parts of a pulse, using standard terminology
(positive polarity). For negative or inverted polarity, the “Duty” would be the time that the
signal is LOW.

The PWMPOL register, which determines the polarity of the pulse, is shown below.

Strangely, the default condition of each PWM channel is negative or inverted polarity. For
most of our applications, we want to set the bits in PWMPOL to make them normal polarity.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 140

The next characteristics of the waveform all relate to timing. You’ve learned in other
courses that the most basic aspects of waveform timing are frequency and its inverse, the
period. The timing characteristics are based on clocks internal to the PWM module.

There are four clocks that are available to drive the PWM rates, and all are based on the bus
clock. The clocks are called A, SA (scaled A), B, and SB (scaled B). Either the A/SA or
B/SB clock pairs are available for the PWM you’re working with, defined in the hardware of
the device. For each PWM channel, you must decide whether you want to use the basic
clock that’s available (A or B) or whether you want to use the scaled clock (SA or SB). This
is done through the PWMCLK register.

It’s important to note which basic clock is being used, A or B, and that ‘0’ selects the basic
clock whereas ‘1’ selects the prescaled version of that basic clock.

The next register to configure is PWMPRCLK. This register determines how clock A and/or
clock B is divided down from the bus clock. PWMPRCLK affects the basic clock speeds, and
so affects the frequency of all waveforms produced by the PWM module. Notice that both
prescalers are contained in the same register, but at different bit locations. Be careful with
this! Also, notice that there are only three bits associated with each prescaler. That’s
because these bits represent the power of 2 for the prescaler. We’ll refer to the prescaler
as 2PREx, where ‘x’ is either A or B.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 141

If you have chosen to use the scaled version of the clock, SA or SB, it is necessary to use
the PWMSCLA or PWMSCLB register, as well. We’ll refer to these as PWMSCLx, where ‘x’
is either A or B. This provides the scaling factor, allowing for fine control over the settings
chosen for the A or B clock previously. The information for PWMSCLA has been provided;
PWMSCLB behaves identically, but for clock SB.

PWMSCLA divides down Clock A to generate Clock SA, and PWMSCLB divides down Clock B
to generate Clock SB.

Be aware that the clock is divided by TWICE the value you choose for the scaling value, not
the scaling value itself.

There’s a “NOTE” on the data sheet indicating that 0x00 means 256. This does not seem to
be true. The biggest divisor available seems to be 2 x 255 = 510.

In addition to the clock rates chosen, the waveforms you will be generating are managed by
byte-sized period and duty values, controlled using two more registers: PWMPERn and
PWMDTYn, where “n” is the number of our selected channel. Channel 0 is shown below:

The period and duty values are expressed as numbers of clock cycles. This means that the
shortest period would be 2 cycles of the clock, (up for one cycle, down for one) and the
longest would be 255 cycles of the clock. For this shortest period, the duty could only be 1,
since either 0 or 2 would produce a DC signal.

Typically, the duty cycle of a signal is defined as a ratio or percentage, as shown below:

T
t

d p= or %100×=
T
t

d p

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 142

So, the duty cycle for the PWM module, as a ratio, would be

PWMPERn
PWMDTYnd =

A very common duty cycle is 50%, which represents a true square wave. For this,
PWMDTYn would be half of PWMPERn.

There are several strategies you may use to determine clock scaling values, the simplest
being to pick a frequency and a fixed duty cycle, then work backwards to solve for the
required clock pre-scalers, period value, and duty value. Enter the number of clock cycles
for the period into PWMPERn, then enter the number of clock cycles (less than PWMPERn for
obvious reasons) into PWMDTYn.

The frequency, and consequently the period, of the output signal are, therefore, controlled
by two variables if the prescaled clocks are not used: The A or B clock pre-scaler from
PWMPRCLK and the number of PWM clock cycles per period in the PWMPERn register.

8

2PREx
MHzf
PWMPERn

=
×

 and 125 2PRExT ns PWMPERn= × ×

If the prescaled clocks are used, three variables control the resulting frequency:
PWMPRCLK, the SA or SB clock scale register (PWMSCLx), and the number of PWM clock
cycles per period in the PWMPERn register.

PWMPERnPWMSCLx
MHzf PREx ×××

=
22

8
 and PWMPERnPWMSCLxnsT PREx ××××= 22125

For reasonably accurate frequencies, you should try to keep the value of PWMPERn large –
close to 255. For example, if you are off by a cycle, one cycle out of 255 is much less
significant than one out of three!

The last thing to do is actually turn on the channel, which is done by setting the
corresponding bit in the PWME register:

We’ve left discussion of this register to the end because, unlike many of the modules we’ve
worked with to this point, we sometimes don’t want to have the PWM channel turned on all
the time. Manipulating this register allows you to turn your signals on and off under
software control.

The code snippet on the following page turns a 1 kHz square wave, sent to the speaker, on
and off once per second. If you build this code, you can monitor the signal by probing the
left side of JP1 on the board with an oscilloscope. Also, with JP1 installed and VR2 turned
up, you should be able to hear the tone.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 143

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 144

True Pulse-Width Modulation
For many applications, including motor control, a pulse-width modulator is set to operate at
a fairly high but constant frequency (called the “chop frequency”), and the pulse width, or
duty cycle, is modified (modulated) to produce a varying average voltage. On our
microcontroller development kits, the most obvious application of this is in controlling the
brightness of the LED back light and/or the brightness of the three colour elements of the
Red/Green/Blue (RGB) LED. Since our eyes are typically not sensitive to changes faster
than about 100 per second, we can set the frequency to something fairly slow, as far as the
PWM module is concerned – on the order of 100 to 200 Hz. Once the frequency is
established and the desired channels are turned on, we simply vary the duty cycles to vary
the brightness.

The LED backlight (channel 3) operates over a reasonable range of brightness, so we can
comfortably vary the duty cycle from 0% (full OFF) to 100% (full ON, or DC). However, the
RGB LED is intensely bright, so we usually limit the duty cycles of its elements (channels 0,
1, and 4) to less than 25%.

In both cases, since the duty cycle is of primary importance to us, we will set its range to
something easily-manipulated by using a PERIOD value like 100 or 200. With a range like
that, 100% is either a duty of 100 or 200, making the steps easy to work with – either 1%
per step or 0.5% per step.

(Optional topic) True Pulse Width Modulation is also used in Class-D audio amplifiers, which
are used in most low-power audio devices (cell phones, mp3 players, tablets, laptops, etc.);
and it is also used in FET power amplifiers used for public address systems and many home
audio systems and high power sound systems like those used in live music venues.

In this case, the chop frequency is set to double the desired audio range or often much
higher (double meets the requirements of Nyquist’s sampling rate). The duty cycle is
modulated to follow the constantly-varying amplitude of the desired signal. The resulting
series of pulses is fed into an integrator, which produces a signal averaged, or smoothed,
over time. The figure below shows the modulated pulses (full scale) and the output of the
integrator, which is roughly sinusoidal in this instance.

The “jagged sinusoid” shown above would be the result of simple integration of the PWM
pulses. Note that, when the duty cycle is greater than 50%, the integrated signal rises;
when the duty cycle is less than 50%, the integrated signal falls.

In reality, the difference in frequency between the PWM signal (chop frequency) and the
output of the integrator (the demodulated signal) would be so great that the “jaggedness”
would be greatly reduced. Additional filtering, following the integrator, would be used to
further remove unwanted high frequency components.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 145

The following page shows a sample section of code, with the resulting waveforms seen at
the output of the PWM (channel 1) and after the integrator (channel 2). Note the following:

1. The values for the duty cycles in the lookup table “cWave[180]” were generated
using the formula shown in the “fx” line of the Excel screen shot below, applied to
angles, in steps of 2 degrees, from 0 to 358:

Excel works in radians only, hence the conversion of angles to radians; the resulting
values will range from 63+64 = 127 to –63+64 = 1, giving us all positive values in a
sine wave with an offset of 64; we want the nearest integer, since the 9S12X
microcontroller isn’t set up at this time to use floating-point decimals; we don’t
include 360º, as that’s the same as 0º in our repeating sine wave.

2. Both the PWM module and the Timer are running as fast as possible – the Bus clock.
3. The PWM module is set to run at 62.5 kHz, well above the audible range.
4. Using a timer interval of 44 counts, each 125 ns long, it takes 990 µs to run through

all 180 values for the duty cycle in the table, for a frequency of 1.01 kHz on the
resulting sine wave. The endless “for” loop starts at the top of the table again.

5. The PWM frequency is constant – only the duty cycle changes sinusoidally.
6. The speaker is driven by a transistor switch, which is an inverter, so the sine wave

rises when the duty cycle is close to 1/128 and falls when it is close to 127/128.
7. The jagged edge of the integrator can be seen on the sine wave.
8. Channel 2 is AC coupled to block the DC offset generated by the transistor switch.
9. The speaker volume control is set to maximum to drive the integrator appropriately.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 146

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 147

I2C Bus
There are a number of serial communication systems that can be used to communicate
between devices on a printed circuit board or over short distances. One reason for doing
this is to reduce the number of interconnections required between devices. We discussed
this earlier, when we compared using more than 64 parallel wires (and, incidentally, more
than 64 pins per device) with using RS-232 as a serial communication system that needed,
as a minimum, three wires: transmit, receive, and ground. The 9S12XDP512 also provides
other serial communication options: Serial Peripheral Interface, or SPI, Controller Area
Network, or CAN Bus (typically used in automotive applications), and Inter-Integrated
Circuit, or I2C Bus. Different peripherals are available for these different busses, depending
on the desired application. What they share in common is the ability to put multiple devices
on a single bus, which dramatically simplifies the hardware component, but complicates
thesoftware component somewhat.

In previous versions of this course, we chose to work with the SPI bus, as it is an old
workhorse that’s not likely to go away anytime soon. However, when the current version of
the microcontroller board was designed, we focused on the I2C bus. On your board, you will
find the following I2C devices (they’re tiny, so you might have to search for them):

• M41T81 Real-time Clock (with battery backup – the battery is under the LCD display)
• 24AA512 Memory – 512kB of EEPROM
• LTC2633HZ12 Dual channel 12-bit Digital to Analog Converter (DAC)
• MPL3115A2 Precision Altimeter/Barometer/Thermometer
• LSM303DLHC Accelerometer/Compass

The I2C bus requires, in addition to power and ground, two lines: SCL is the serial clock,
and SDA is for bidirectional serial data transmission.

This bus is configured so any device can be “master” and take control of communication
with any “slave” it chooses to talk to. Since only one device can talk at a time, this
becomes a logistical issue: devices that aren’t talking must not have any effect on the bus,
or they will prevent other devices from communicating or will introduce errors.

Multi-drop communication is achieved by making all of the connections to the bus open
drain or open collector. In your semiconductors course, you learned about at least one
such device – the dedicated comparator. For these devices to work, an external pull-up
resistor is needed. Internally, each device has a FET or BJT wired as a switch, but the
switches lack an RD or RC, which we must provide externally. With the I2C bus, all the
devices use the same pull-up resistor, which makes them act as wired-OR devices. When
their transistors are turned OFF, the pull-up resistor pulls the line up to a logic HIGH. When
any one of the devices turns on its transistor, the line pulls down to a logic LOW. So, as
long as all devices rest with their transistors off, any single device can talk without
interference from the rest.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 148

Another feature of this system is its ability to communicate at different speeds for different
devices. The device talking at any point in time generates the clock, which synchronizes
communication with the receiving device. The typical maximum speed for the I2C bus is
100 kb/s, but some devices have been designed to handle up to 400 kb/s.

How do the devices know who’s talking and who’s listening? Each device has a unique 7-bit
address, partly built into the device and partly hard-wired when the board is built. For
example, the LTC2633 DAC has, as the top bits of its address, 00100xxr. There’s one pin
that makes possible three distinct addresses by controlling the bottom two bits. Here’s how
that works:

CA0 Condition Lower two bits
Ground 00
Floating 01

VDD 10

This means that you could have three LTC2633 DACs on the same bus with different
addresses: 0010000r, 0010001r, and 0010010r. Now for one of the things you need to
know as a programmer: These seven bits are at the TOP of the address, and the least
significant bit is used as a Read/Write line. So, to talk to these devices, you would need to
treat these three addresses as 0x20, 0x22, and 0x24. However, as is made obvious by the
oscilloscope in this author’s cubicle, they are officially only 7-bit addresses with the low bit
missing, and should be thought of as 0x10, 0x11, and 0x12!

Here’s a screen shot from the author’s oscilloscope of the 9S12X talking to a device with the
seven-bit address 1100000r which we would have to treat as 0xC0, but is officially 0x60.

The top trace is SCL. Notice that it starts and stops, depending on how the bus is being
used. The lower trace is SDA, and contains communication both from the 9S12X, acting as
a “master”, and the device at address 0b1100000r, acting as a slave. The line at the
bottom shows that the master told the device it was going to Write something to it “60W”,
sent 0x04 “04” to it, indicated a restart “S”, told the device it was going to Read from it
“60R”, so the device put 0x15 “15”on the bus. (The “a” and “~a” are ACK and NACK
handshaking tools – each master Command expects an ACK (acknowledge), but
communication back from the slave is followed by a NACK (not acknowledge) instead.)

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 149

Basic I2C Communication Using the 9S12X
On our board, the 9S12X will always be the Master, and the peripherals on the board will be
Slaves. Here’s a table of the addresses for the available devices:

Part Part Number
I2C Address

(7-bit)
I2C Address

(with R/W as r)

Real Time Clock M41T81 0x68 0b1101000r

512 kbit Memory (64kB) 24AA512 0x50 0b1010000r

Dual 12-bit DAC LTC2633HZ12 0x10 0b0010000r

Pressure/Temperature MPL3115A2 0x60 0b1100000r

Accelerometer LSM303DLHC 0x19 0b0011001r

Compass LSM303DLHC 0x1E 0b0011110r

To use the bus, our micro has to do the following:

1. Check to see if the bus is available by checking the “IBB” bit (b5) of the status register
(IBSR). This is the “Bus Busy” bit, and is SET when the bus is being used.

2. If the bus is available, issue a “Start” to take control of the bus. (Incidentally, “Start”
involves a negative-going transition on SDA while SCL is HIGH. This is generated in our
I2C controller by setting the Master and Tx bits in the control register, IBCR.)

3. Notify the desired slave by its address, while at the same time indicating, typically, that
we’re going to write to it.

4. Send a byte that contains the internal address of the register we want to put something
into or take something out of.

Now, things go either of two ways, depending on whether we’re writing or reading.

Writing

5. Send the data.
6. Indicate a “Stop” to free up the bus for another device to take control (of course, on our

board there’s no one else to take control, because there’s just one device that has the
brains to be Master, and that’s our 9S12X). A “Stop” involves a positive-going transition
on SDA while SCL is HIGH. (In our I2C module, clear the Tx bit in the IBCR.)

Reading

5. Indicate a “Restart”, which will allow us to keep control of the bus, and allows us to
issue a new command to the slave of our choice. (There’s a Restart bit in IBCR.)

6. Send the slave’s address again, but this time indicating we’re going to Read from it.
(Usually, the contents of the register we indicated in step #4 will be waiting for us.)

7. Receive the data byte.
8. Indicate a “Stop” to free up the bus.

You’ll have to also check to see if data is actually available, and wait until communication is
complete, etc., but for now that’s the basic process.

Variations on the theme:

• If you need to write more than one byte to a device that knows how to do that (e.g.
one that auto-increments the internal address), you can just keep writing data bytes
until you’re done, then indicate a Stop. One example of this is for memory devices
that require a 16-bit address, like the 24AA512. For these, we have to send two
bytes to establish the starting address of the internal memory location we’re

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 150

interested in. Then, we can keep sending sequential bytes until we’ve stored
everything we intended to store.

• If you need to read more than one byte from a device that knows how to do that,
you can just keep reading data bytes until you’re done before indicating a Stop. One
example of this is the MPL3115A2, which can send its information in five consecutive
bytes. Other devices need to transmit 16-bit values in two bytes.

• … There seem to be an almost-infinite number of variations on the theme. The
datasheets for each I2C device will provide necessary information and timing
diagrams to help you establish a working relationship with that device.

You will want to start a new library and library header called “IIC0_Lib”. The IIC0 part is
because there are two I2C busses on our controller, and the devices on board are wired up
to I2C-0. These are the primary functions you’ll eventually have in it:
void IIC0_Init(void);
void IIC0_WriteDAC(unsigned char cAddr, unsigned char cCommand, unsigned int iData);
void IIC0_Write(unsigned char cAddr, unsigned char cReg, unsigned char cData);
unsigned char IIC0_Read(unsigned char cAddr, unsigned char cReg);

In the header file, you may choose not to specify the names of the parameters passed, to
provide you with more flexibility. Suitable names have been provided above to indicate
what the various parameters do.

The Init routine sets up the I2C-0 port in the 9S12XDP512. In the “Data Sheet”, this is
discussed in detail in Chapter 9, parts of which are included in the discussion below for
convenience.

There are five registers used by the I2C controller. To specify which I2C module we’re
interacting with, we need to tack IIC0_ in front of the register names.

IIC0_IBAD – This is the I2C slave address assigned to the 9S12. We don’t have to worry
about this one, as we’ll always be the Master, not the Slave.

IIC0_IBFD – This is the Frequency Divider Register to set up the communication rate. To
set it up, you need to know what the requirements for the slowest device on the bus will be,
then pick a value that matches. This register sets up the clock speed and how many clock
cycles will be used for SDA Hold, SCL Hold for Start, and SCL Hold for Stop. There’s a
divider and a multiplier and a complicated formula, all of which can be bypassed by using

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 151

their lookup table, Table 9-5 in the current version of the Data Sheet, which is five pages
long! Here’s a piece of it that will help us figure out what we need to put into IIC0_IBFD:

Given the peripherals installed on our board, your instructors (primarily Simon Walker) have
determined that we want to operate at 100 kHz, with 20 cycles for SDA Hold, 32 cycles for
SCL Hold for Start, and 42 cycles for SCL Hold for Stop. (All of that information is found in
the data sheets for the various devices, and values have to be chosen for the slowest device
on the bus.) Given that we have an 8 MHz bus clock, you should be able to determine that
the appropriate value for IIC0_IBFD is 0x47.

IIC0_IBCR – We want to enable I2C, turn off interrupts, and operate normally in WAIT
mode. The rest of the bits can be 0 for now. One hitch: The Data Sheet says that I2C
must be enabled before changing any of the other bits in this register, so we have to turn
that bit ON first by itself, then make sure the interrupts and WAIT mode bits are turned OFF
after that – two writes to this register.

If you’ve been following this discussion, you should be able to verify the IIC0_Init() routine
shown in the start to the IIC0_Lib.c file, shown below.

Two bits are important in the Status Register, IIC0_IBSR: b5, IBB, is the I2C Bus Busy flag,
and b1, IBIF, the I2C Interrupt Flag, which is set whenever a transfer is complete (whether
or not we have interrupts enabled). The IBIF flag needs to be cleared by writing a 1 to it.
For some devices, such as the 24AA412 EEPROM, you will also need to monitor RXAK, the
“receive acknowledge” bit if you want to access more than one byte of memory at a time.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 152

LTC2633HZ12 I2C DAC – 16-bit Data Writes
We’re going to start with a device that “breaks the rules”, because it’s a fairly easy device to
work with. It has no registers that we need to read, so communication is one-way.
However, it’s a 12-bit DAC, so it needs a dedicated 16-bit “write” function so you can get
going with the I2C bus, then later we’ll write the standard 8-bit “write” and “read” functions.

The LTC2633HZ12 DAC that’s been added to your board is a dual 12-bit DAC, set up so that
its internal reference is effectively 4.096 V. DACA and DACB, the outputs of the two
internal DACs, are available to the right of the DAC module on your microcontroller kit, with
a ground pin positioned between them.

The pinout of the IC is as follows:

On the board, “CA0” is connected to ground to make the device’s slave address end in “00”
– i.e. 0x10 or 0b0010000r. (Check back a few pages to recall why this is the case.) If you
want, you can add up to two more LTC2633HZ12 modules: leaving CA0 floating makes the
address 0x11 or 0b0010001r, and connecting CA0 to +5 V makes it 0x12 or 0b0010010r.

The data sheet for this device goes into a lot of detail about how to use it, but the following
snippet is particularly informative for us in terms of how to send information to the DAC.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 153

Since it’s a 12-bit device, it’s obviously going to need two bytes of data sent to it. In fact,
as an I2C device, it’s going to need three bytes total: A Command byte and two bytes of
data, as shown on the previous page. Of course, this comes after identifying the DAC itself
on the I2C bus using its address.

We’ll send the address as a parameter each time to be consistent with other functions in our
I2C library, although it should always be 0x20 – based on the seven-bit I2C address of 0x10,
which translates to 0b0010000r, where ‘r’ is the Read/Write bit. If, at a later date, you add
another DAC or two to your board, you will be able to use this function for them, as well –
just wire them up for the other two addressing options, and send to 0x21 or 0x22.

From the data sheet, the device defaults to the mode in which the DAC reference is 4.096 V.
Also, the command we’re going to use to write to the device includes a power-up, so we
don’t need to do any initializing.

The Command byte is actually made up of one nibble for the command and one nibble to
specify which DAC channel or channels you’re addressing. The instructors in this course
have played with this device a fair bit, and have determined that the simplest way to send a
value to one of the DAC channels so that it appears instantly is to use the “Write to and
update DAC register n” command, 0b0011. Then, the lower nibble will be 0b0000 for DAC
A, 0b0001 for DAC B, 0r 0b1111 to set both DACs to the same value.

Like a number of I2C devices (another example is the MPL3115A2 barometer), this device
expects its data to arrive “left-justified”, meaning that the 12 bits it’s expecting are the
upper 12, not the lower 12 of the 16 bits in an unsigned int. (Incidentally, this is to keep it
compatible with other members of the family that have more bits, which improve the
resolution by using the lower (i.e. finer resolution) bits.) So we need to send a byte that
contains the 8 upper bits, and a byte that contains the 4 lower bits followed by four zeros.

We need to write a new version of the I2C “Write” command that fits the following header:
void IIC0_WriteDAC(unsigned char cAddr, unsigned char cCommand, int iData);

We also need to know what the step size is for this DAC.

stepmV
V

StepSize n
ref /1

2
096.4

2 12 ===

When we send a numeric value to the DAC, it will be a number representing the voltage in
millivolts, and it will be in the format we’re used to: right-justified hexadecimal. So, the
first thing we need to do in our function for writing to the DAC is to convert the incoming
value to left-justified format, which simply means moving it from the lower 12 bits to the
upper 12 bits of a 16-bit value. Once that’s been done, we need to send the result out as
two 8-bit bytes, since we can only send 8 bits at a time on the I2C bus.

Based on the timing diagram on the previous page, the three bytes can be sent one after
the other, as long as we wait for the I2C flag to indicate that the device is ready for another
byte. (Incidentally, this is the sequential write process discussed previously, and can be
used for other devices we’ve touched on that have this as one of their modes of operation.)

Again, if you’ve been following the previous discussion, you should come up with something
like the code on the following page. Don’t just copy this: Work it through to make sure you
understand what it does. You may also want to come up with more sophisticated ways of
moving the data to the right place in the int variable and parsing out the two bytes, such as
using regular division and MOD division.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 154

The following code snippet shows a very simple implementation of the preceding function
that generates two 4,095-step ramp waves: a rising ramp on DAC A and a falling ramp on
DAC B. You could use this to check your IIC0_WriteDAC() function. You will need to
declare an unsigned int variable called iDataOut.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 155

Standard Eight-Bit Writing

The standard 8-bit write routine is more generally useful for other I2C peripherals. Here’s
the prototype for this Write command from the header file:
void IIC0_Write(unsigned char cAddr, unsigned char cReg, unsigned char cData);

The Write function needs to be supplied with a device address, an internal address for the
register we’re interested in, and a byte of data to put in that register. Here’s the procedure:

1. Watch the Status Register (IIC0_IBSR) to see when the bus is Not Busy, as indicated
by a LOW on the IBB bit, b5.

2. Once the bus is free, change the micro to “Master” mode, set to “Transmit”. These
bits are in the Control Register, IIC0_IBCR.

3. Place the device address on the bus with the LSB set to “Write” mode.
4. Wait for the Byte Transfer Complete process, as indicated on the IBIF flag of the

Status Register.
5. Clear the IBIF flag by writing a “1” to it.
6. Repeat the last three steps, but this time with the internal address.
7. Repeat, but this time with the data byte, and don’t clear the IBIF flag yet.
8. Stop transmitting and exit “Master” mode, using the Control Register.
9. Finally, clear the IBIF flag.

Take some time to see how the above discussion is handled in the following function.

Note: This routine, and the others in this set of Course Notes, are handled as simply as
possible, and do not provide means of escape if something goes wrong with communication
– the system may simply freeze, waiting for a flag that never comes up. If you have an
application where the system needs to be essentially fail-proof, you will need to incorporate
ways of handling various unexpected exceptions, particularly by avoiding blocking loops (of
which there are four in the previous code alone!). Your instructor or someone with a lot of
experience with this (i.e. Simon Walker) might be willing to help you with this.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 156

Reading

As you can see from the header, the 8-bit “Read” routine needs to be supplied with a device
address and an internal address for the register we’re interested in.
unsigned char IIC0_Read(unsigned char cAddr, unsigned char cReg);

The contents of that register are returned to the main program as a byte. Here’s the
procedure, the first six parts of which were also part of the “Write” routine:

1. Watch the Status Register (IIC0_IBSR) to see when the bus is Not Busy.
2. Once the bus is free, change the micro to “Master” mode, set to “Transmit”.
3. Place the device address on the bus with the LSB in “Write” mode.
4. Wait for the IBIF flag of the Status Register.
5. Clear the IBIF flag.
6. Repeat the last three steps, but this time with the internal address.

7. Now, using the Control Register, issue a “Restart” command.
8. Place the device address on the bus with the LSB in “Read” mode.
9. Wait for the IBIF flag of the Status Register.
10. Clear the IBIF flag.
11. Using the Control Register, get ready to Receive a byte. The last byte received from

a device is supposed to have a NACK following it, so we need to indicate that no ACK
is required. Since you need to SET one bit and CLEAR another bit, this will take two
steps.

12. Here’s a curious fact: in order to initiate a Read, you need to read the I2C Data
Register (IIC0_IBDR) once, which will generate garbage, before you move on.

13. Next, you wait for the IBIF flag, but you don’t clear it yet.
14. Instead, you “Stop” by exiting “Master” mode, using the Control Register.
15. Now, clear the IBIF flag.
16. Finally, you can read the real data out of the I2C Data Register and return it to the

main program.

Take some time to see how the above discussion is handled in the function shown below.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 157

MPL3115A2: Standard 8-bit Reads and Writes
The MPL3115A2 “Precision Altimeter” uses the standard 8-bit Read and Write functions
discussed previously, since its internal registers are few enough to have only 8-bit
addresses, and the data appears in 8-bit registers.

The following is a flowchart from the MPL3115A2 data sheet that shows how to set up the
device and how to read the internal registers. For this course, we’ll just be using the
“Polling” side of the flowchart, so it’s not as bad as it seems at first glance. The discussion
on the following pages will follow the flowchart, with some changes to the data sent to make
the device do what we specifically want it to do.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 158

The registers we need to use are summarized below:

Here are some points about the device, the flowchart, and the registers involved.

• The device’s I2C address is 0x60 (i.e. 0b1100000r), so we need to communicate
with it using 0xC0. Instead of making a variable to hold the slave address as shown
in the flowchart, we can just put 0xC0 in the slave address parameter field.

• We’ll be using our function “IIC0_Write” in place of their “IIC_RegWrite” function.
• During configuration, we need to set up Control Register 1 (0x26). The other

registers default to conditions that are acceptable for us at this point. Here are the
bits of CTRL_REG1:

Following the flowchart, we want to set this up for an “over-sampling rate” of 128 by
setting the OSn bits to produce 27. Also, the flowchart suggests setting b7, which
puts the device into “Altimeter” mode instead of “Barometer” mode. This results in
the value 0b10111000, or, as indicated in the flowchart, 0xB8. We actually want to
operate in “Barometer” mode, so we’ll send 0b00111000 instead.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 159

• The flowchart then sends 0b00000111 (0x07) to the PT_DATA_CFG register to
enable data flags so that pressure events (PDEFE) or temperature events (TDEFE)
are available, using Data Ready Event Mode (DREM).

• The last step in the initialization part of the flowchart takes us back to CTRL_REG1,

where we take it out of standby (SBYB) by putting a 1 in b0. Since there isn’t a
good way of just use OR to change a single bit, we overwrite the register with the
new value: 0b00111001. This is shown in the flowchart as 0xB9, but that was for
Altimeter mode, so, for Barometer mode, we don’t want the MSB set.

• Simon Walker indicates that, for reliable operation, we now need to read the Status
register once before entering the main loop that repeatedly checks the status
register, then reads the data registers when valid data is indicated.

• Inside the loop, as indicated in the flowchart, we wait until the MPL3115A2 reports
the availability of good data, then we read the registers we’re interested in. For
pressure information, these would be 0x01, 0x02, and 0x03. For temperature
information, these would be 0x04 and 0x05.

• The bits of the status register (0x00) are as follows:

The only bit we need to concern ourselves with is b3: PTDR stands for “Pressure and
Temperature Data Ready”. We have to wait for this bit to be SET before we can read
valid data from the other registers. (If you wanted, you could watch for “PDR” or
“TDR” instead, if you only needed pressure or temperature data.)

The values in the data registers are presented in a slightly complicated format, in that they
are left-justified (occupying the upper bits and leaving the least significant bits as zeros),
and they have a fractional component.

The pressure data is in Pascals (Pa), and is provided as 20-bits in Q18.2 format. This
means that the most significant 18 bits are the hexadecimal value of the pressure in
Pascals, and the other two bits are, in order, ½ (2-1) and ¼ (2–2) Pascal weightings.

For example, the three-byte value for pressure can be interpreted as follows:

0x01 = 0b0110 1010
0x02 = 0b0111 0001
0x03 = 0b1001 0000

Pressure = 0b011010100111000110.01 = 108,998.25 Pa

The temperature is even more complicated, as it is returned as 2’s complement negative
12-bit fractional data in ⁰C, provided in Q8.4 format (although the data sheet says Q12.4,
but that would 16 bits). The whole-degrees portion is in the first byte (Register 0x04), and
the fractional part is the high nibble of Register 0x05, accurate to 1/16th of a degree (2–4).

If you just want to display whole degrees, you can ignore Register 0x05 and just use
Register 0x04. To display negative temperatures in a form suitable for human consumption
(pretty important in Alberta!), you would need to perform a 2’s complement conversion on
the negative values to find their magnitude, then simply insert a “negative” sign in front of
the value.

A simpler way to handle both of these sensor values is to use “sprintf” and put the
formatted results into printable strings – see the discussion at the end of using the SCI.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 160

M41T81 Real-Time Clock – Standard 8-bit Reads and Writes
Back to I2C devices: The M41T81 Real-Time Clock is designed to do either multi-byte
communication (like the EEPROM), or individual register reads to get the information we’re
looking for, and individual register writes to change the time, date, or control bits.

As with the other devices we’ve covered in this course, there are a lot of features we don’t
have time to cover in this brief overview. However, the full details can be found in the data
sheet for this device, available from the Internet or in Moodle for this course.

The designers of this device chose to present the data in BCD, which is quite helpful, in that
we don’t need to do conversions before we display its results.

Since the results are in BCD, you need to work with the two nibbles in a byte to get the full
number (e.g.) to get 35 s, you read register 0x01, in which the upper nibble will contain 3
(once ST is masked off) and the lower nibble will be 5.

The M41T81 has likely been running on your board ever since it was assembled, and it
contains a lot of information, which, at this point, is almost guaranteed to be incorrect. This
device has its own internal 32.768 kHz crystal, so it doesn’t rely on the bus clock or an
external crystal oscillator. It has a backup battery with a circuit that detects when the main
board power is turned off, so it continues to maintain the time and any settings when the
board is turned off. It keeps track of time and date in hundredths of seconds, seconds,
minutes, hours, day of week, date, months, years, and even centuries (although just the
twenty-first and twenty-second centuries!), with leap years built in, so it is a true calendar
as well as a clock.

Along with current time and date, the device has the capability of being used as an alarm,
as a square wave generator, and as a microcontroller monitoring device called a
“watchdog”. Here’s a list of its internal registers, along with a description of the labels used
for control bits that are scattered throughout the registers:

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 161

Notice again that the data is presented in Binary-Coded Decimal (BCD), using two nibbles
for each item. The number of bits required for the most significant digit depends on the size
of the particular digit, so, for example, the month only needs a zero or a one for its first
digit, the day of the month requires two bits for its first digit to cover the possibilities of 0,
1, 2, or 3, and the year requires all four bits to represent values from 0 to 9.

Since the other bits aren’t needed for the data, some of them get used for control and
reporting functions. A very important one is “ST”, which is the MSB of the “seconds”
register. This bit stops the clock crystal, and the registers hold the last available data.

Another bit that’s very important is b6 of the Alarm Hour register: “HT”. When the power
on the board goes down and the Real Time Clock switches to battery, this bit is set to halt
the updating of the registers, while the clock continues to run in the background. This
allows the user to write code to read the registers on power-up to find out when the power
failed, before reactivating the normal operation in which the proper time will be reported.

So, if you want to know when the power went down, you can read the time registers before
clearing the HT bit to get the power-down information; in any case, you will need to clear
the “HT” bit to let the clock report the current time.

The “ST” bit must be cleared to allow the clock crystal to run. Once this bit has been
cleared, it will stay cleared until it is deliberately set, so it’s best to check to see if it needs
to be cleared before doing anything to it. If you go through the process of clearing it
unnecessarily, you may lose the occasional second on the clock, since this bit is in the
“seconds” register. Why? Because to clear the ST bit, we need to read the seconds
register, clear the ST bit in the read-in value, then write the resulting value back into the
seconds register. If the seconds register updates during this process, the value written
back in will be the old value, which is one second behind. Also, if you clear the ST bit
before you clear the HT bit, you will be reading in the seconds value that was held for
reporting the power-down, and will write that back in, overwriting the current seconds value
with an old (and incorrect) value.

Unlike interrupt flags, these bits are cleared by writing ‘0’ to them.

The Real-Time Clock’s I2C address is0x68, which translates into 0b1101000r for our
purposes. The code snippet on the following page shows how to start the clock if it isn’t
running, how to allow it to report current data, and how to read in current data from the
registers associated with seconds, minutes, hours, date, month, and year. The actual
process of displaying the data is not shown, as that would be dependent on the display
device chosen.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 162

In this code snippet, notice there’s a “SetTime” function call that has been commented out.
The code was run once with that line included, then the version of the code with it excluded
was down-loaded to the microcontroller so that further resets or power-ups will not set the
time back to the numbers hard-coded into this routine. Clearly, a more sophisticated
means of setting the clock would be useful – for example, a function that responds to a
switch press if the user wants to set the time.

Notice that all of the values sent to the “SetTime” function are indicated as hexadecimal:
that’s because BCD, which is what the clock is expecting, isn’t decimal – it’s a binary (or
hex) code used to represent decimal values. So, 0x31 represents 31 minutes in the second
byte of the function call.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 163

Position Information with the LSM303DLHC – Standard 8-bit Reads and Writes
(Optional topic) Another device that can be controlled and accessed using eight-bit address
and data reads and writes is theLSM303DLHC eCompass Module. (It can also be accessed
using multi-byte sequences, but we’ll stick with the easier approach.) This unit contains a
three-axis accelerometer, a three-axis magnetometer, and, probably because everyone else
is doing it, another temperature sensor. Here’s a clip from the datasheet.

3-Axis Accelerometer
You should recall, from earlier physics-related science courses, that objects near the earth’s
surface accelerate at a rate of approximately 9.81 m/s2 if allowed to fall freely. This is
referred to as 1.0 g (not to be confused with the SI unit for grams – we just ran out of
letters!). The accelerometers in the LSM303DLHC report acceleration in milli-g’s, which
shows up in the datasheet as mg, again, not to be confused with milligrams.

The seven-bit I2C address for the accelerometer is 0x19, so the eight-bit representation of
this is 0b0011001r.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 164

There are a bunch of internal registers associated with the accelerometer:

That’s a lot of registers! At least they still fit in an 8-bit internal address space, so we don’t
need a new routine to set up this IC. The registers on the following pages the ones that are
significant to us at this point, but you may find you can make use of some of the more
esoteric features of this chip, such as the free-fall sensors (possibly used to park a hard-
drive on a falling laptop), or the “click” sensor (possibly used to determine if someone is
tapping an interactive display).

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 165

From this set of tables, we can determine the values needed to enable the three axis
sensors, turn on the accelerometer, and set up its refresh rate. Note that the default
condition, 0b00000111 (found in the Register address map table of the data sheet), disables
the accelerometer, so we have to deal with this register. For our purposes, a speed of
100 Hz in normal mode, with all three axes enabled is suitable: 0b01010111.

For now, we’ll leave control registers 2_A, 3_A, 5_A, and 6_A as they are – they deal with
interrupts and some of the features that are less useful to us at this point.

 Default 0b00000000

 Default 0b00000000

 Default 0b00000000

 Default 0b00000000

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 166

For this, you need to know something you may have learned earlier: the difference
between Motorola-type and Intel-type microprocessors. Motorola-type processors are
referred to as “Big-Endian”, as sixteen-bit values are accessed MSbyte first, LSbyte last;
Intel-type processors are referred to as “Little-Endian”, as sixteen-bit values are accessed
LSbyte first, MSbyte last. Although the register tables tell us that the MSbyte for each
accelerometer appears at the lower of the two addresses, that isn’t necessarily the case: in
Little-Endian mode (the default), the lower of the two addresses is actually the LSbyte,
which can be very confusing. So, we want to put this device into Big-Endian mode.

Also, we need to determine the full-scale readings for the accelerometer. This is a good
place to note that the values are returned as 16-bit 2’s complement signed integers – but
we’ll be reading them as two eight-bit values. More on that later. The FS bits determine
the range that can be covered by the device. For high sensitivity, we’ll choose the ±2 g
scale (00). Given that this is a 12-bit device, the step size is

12
4
12 −

=
gstepsize , or 0.977 mg/step (Don’t believe this value too quickly!)

0.997 looks eerily close to 1 mg/step. In fact, in the datasheet, Table 3, the sensitivity is
shown as below:

The datasheet doesn’t indicate which of these values is correct – it could be that the “±2 g”
is an approximate value and the sensitivity is actually 1 mg/step for a true scale of
±2.047 g, or it could be that the full scale is accurate, and the sensitivity is rounded. We’ll
assume that the 1 mg/step is correct, as this seems to be verified empirically.

A suitable entry for CTRL_REG4_A is 0b01001000.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 167

The data shows up in the following registers:

Data is available as indicated by the status register:

The bit we’re interested in is ZYXDA, which tells us that all three values are available. For
simplicity, we’ll typically work with a blocking loop that waits for this flag to come TRUE.
However, this could result in the program hanging if something is wrong with the I2C bus or
the accelerometer IC.

Since the I2C bus only handles eight-bit values, we’ll need to read two bytes to get a
complete value. We can either do that by using our existing IIC0_Read() routine twice, or
we can make a new routine that reads the two bytes and combines them into a single
sixteen-bit value. If you want to go that route, here’s one version of a working routine.

The data you read back will be formatted at 16-bit 2’s complement, but it’s actually 12-bit
2’s complement left justified. In other words, the bits you’re interested in are in the upper
three nibbles. A quick way to fix this is to divide by 16, which will do an arithmetic shift left
by 4, keeping track of the sign of the number.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 168

3-Axis Magnetometer and Temperature Sensor
(Optional topic) Working with the earth’s magnetic field is a surprisingly complex problem,
as it is three-dimensional, and quite weak compared to the magnetic fields produced by
electrical currents and magnets in equipment and the residual magnetism in metal used in a
building or its furnishings. If you need to make a proper compass, you will find it not to be
a trivial exercise. In this course, we will simply look at what you need to do to get the
values from the magnetometer – it’s up to you as to what you want to do with them!

The magnetometer is a separate device inside the LSM303DLHC, at a different I2C address
and with different configurations. For example, there’s no “Big-Endian/Little-Endian” issue:
the registers are just MSbyte-LSbyte, in that order.

The magnetometer (and the temperature sensor) address is 0x1E, or 0b0011110r.

There are three control registers, all of which need our attention.

A value of 0b00011000 in CRA sets the device up for a 75 Hz refresh rate, with no
temperature sensor. 0b10011000 enables the temperature sensor, if you want it.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 169

The CRB register sets up the sensitivity of the magnetometer. Although the middle column
claims to set the gains equally for all three channels, the next column over indicates that
the Z channel has a different sensitivity. We’ll go with the assumption that the Z column
was put in the datasheet for a purpose, so the middle column must only apply to X and Y.

The units are unusual: LSB/gauss. This is the inverse of the step size, so the bigger the
number, the more sensitive the device, as shown in the fourth column. Another thing that’s
unusual is the use of “gauss”, a holdover from an old measurement system based on
centimetres/grams/seconds (CGS) rather than the SI system’s metre/kilogram/seconds
(MKS) standard. In the MKS system, the tesla is used, and is 10,000 times bigger than a
gauss.

For greatest sensitivity, we’ll use a value of 0b00100000 for CRB. This makes the step-size
for the X and Y channels 0.909 mG/step, or 90.9 nT/step. The Z channel sensitivity is
1.02 mG/step, or 102 nT/step.

The MR register defaults to 0b00000011, which puts the magnetometers into sleep mode.
Values of 00 are needed in the MD1 and MD0 bits to put the device into “Continuous
conversion” mode.

Once all of that is set up, the data can be read when the LSB of the status register goes
HIGH:

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 170

The data is available as shown below:

This time, the data is right-justified! This means there’s no need to shift the data to the
right – it arrives as a proper 2’s complement signed number, with the upper four bits
stuffed appropriately.

If you want to use the temperature sensor and you’ve enabled it earlier, its values are
available as shown below:

Note that this is left-justified, so you’ll need to divide by 16 to move it into proper position.
The value is 2’s complement signed, and has a resolution of “8 LSB/deg”, or a step size of
0.125 ⁰C/step. That means that the three LSB’s are fractional: 1/2, 1/4, and 1/8.

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 171

Device with 16-bit Internal Addresses (e.g. EEPROM) – Write and Read Functions
(Optional topic) In order to use the EEPROM on your board, you need 16-bit address
versions of these two routines, shown below:

If you want to transfer an entire array of bytes between the micro and the EEPROM, you
would want to make versions of these routines that can write or read a bunch of bytes
sequentially. The EEPROM is designed to operate in a special paging mode, in which a full
“page” of 128 bytes is read from or written to the device. This requires starting at a page-
delineated address, and also involves pointers to string arrays for the microcontroller. The
information as to how to manage “Page Write” or “Page Read” transfers is available in the
data sheet for the 24AA512 EEPROM. This topic goes beyond the scope of this course, but
the following gives you a starting point. Multiple reads and writes involve issuing an I2C
ACK signal between each byte transferred, with a NAK signal at the end; unlike normal
single byte transfers, which only issue NAK signals. With the 24AA512, since it operates
more slowly than the I2C bus, we need to wait until it’s ready for the next byte. The only
way to handle this is to send the byte and see if it’s acknowledged; if it isn’t, we send the

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

NCP1503 Topic 3 Page 172

byte again and keep doing so until it is acknowledged. With all of this hand-shaking, the
possibility of hanging up the program waiting for a flag, an ACK or a NAK looms large. It’s
best to write software that will only wait so long, then returns an error code to indicate that
the system has failed. As previously mentioned, Simon Walker has written an extensive set
of I2C library components that handle multiple reads and writes, along with page reads and
writes, all of which have escape routes in case of failure. If you find yourself using I2C
devices on a regular basis, you should talk him about how to use his library components.

I2C Reliability Measures
As indicated in the previous discussion, you probably discovered, with the simple routines
created for your library, that the I2C bus sometimes goes insane (mostly when you’re
troubleshooting, as it’s pretty dependable in normal operation), and your program will hang
up waiting for a flag, often in IIC0_IBSR. A partial solution to this, which you would see
implemented in Simon Walker’s library, is to put a counter into the
while(!(IIC0_IBSR&0b00000010)) loop so that after a certain number of tries, say 5000 or
so, you exit the loop and return an error code. A typical error code is 0b11111111 (i.e.
0xFF), which, as a signed number, is –1, and as a Boolean value, is ~0. You may also want
to come up with more sophisticated “try-catch” routines that allow your program to continue
operating when the I2C bus goes down, including prompting an operator to cycle the power
on the board, if necessary.

Speaking of Simon Walker, he’s come up with library components that allow for a greater
layer of abstraction while, at the same time, allowing for the implementation of lower-level
I2C commands and management of error conditions. You may be provided with instruction
related to this approach to the I2C bus.

Parting Words
You have now touched on some of the capabilities of a very powerful microcontroller and a
selection of associated peripherals that were built into your microcontroller kit. You’ve
learned, with varying levels of proficiency, how to use a fairly wide range of peripherals,
both internal to the microcontroller, and external, connected through a number of different
interfaces. In addition, you’ve learned how to program the device in its native Assembly
Language and in C. You know enough about electricity and electronics to be dangerous.
With a bit of ingenuity, you could do some serious design work. Go forth and build things!

	Topic 1 – Embedded Systems Theory and the 9S12X Device
	Required supporting materials
	Rationale
	Expected Outcomes
	Where are you at?
	Embedded Controllers
	The MC9S12XDP512 Microcontroller
	The CNT MC9S12XDP512 I/O Board
	Types of Interfaces
	Port Addressing
	Switches and LEDs

	S12XCPU Assembly Language and the S12XCPU Microprocessor Core
	Accumulators and Registers
	Memory
	Memory Map

	Topic 2 –Microcontroller Programming
	Required supporting materials
	Rationale
	Expected Outcomes
	Connection Activity
	Assembly Language Fundamentals
	Assembler Directives
	Instructions
	Rudimentary Debugging Skills

	Documentation and Comments
	Using the Skeleton.txt File
	Flowcharting
	Subroutines
	Libraries of Subroutines

	S12XCPU Addressing Modes
	Inherent - INH
	Immediate - IMM
	Extended – EXT
	Direct – DIR
	Relative – REL
	Indexed – IDx, IDx1, IDx2, [IDx2], [D,IDx]
	Frequently-Used Instructions

	Masks and Bitwise Boolean Logic
	Commands affecting an entire register or memory location
	Commands affecting selected bits
	Commands responding to selected bits

	Using Variables and Constants
	Programming in C
	Setting Up an ANSI C Project
	ANSI C Skeleton File

	Switches and LEDs with ANSI C
	Functions
	Libraries of Functions
	Summary

	Numeric Manipulation
	Understanding Base 10
	Converting Binary to Decimal
	Converting Hexadecimal to Decimal
	Converting Hexadecimal to Binary
	Converting Binary to Hexadecimal
	8 Bit Arithmetic
	Working with 2’s Complement

	Topic 3 –Interfacing With Internal and External Devices
	Required supporting materials
	Rationale
	Expected Outcomes
	Connection Activity
	Disclaimer
	Interfacing the ICM7218A 8-Digit LED Display Driver
	ICM7218A Programming Tables
	Sending Data to the ICM7218A
	Seven Segment Display Library Components
	Seven-segment Display Control Using ANSI C
	SevSeg_Lib.h
	SevSeg_Lib.c

	Binary-Coded Decimal Representation and Manipulation
	Converting Hexadecimal Values to BCD
	Misc_Lib.h
	HexToBCD
	BCDToHex

	Switch Management
	Detecting Switch Change of State
	Debouncing
	SwCk() Debounced Switch Routine

	Parallel Interfaces: Get On the Bus
	Data Bus
	Address Bus
	Control Lines

	LCD Displays Using the Hitachi HD44780U Controller
	The HD44780-controlled LCD on the 9S12X Development Kit
	Operation
	HD44780 Instructions
	LCD Controller Initialization
	LCD_Init
	LCD_Ctrl
	LCD_Busy
	LCD_Char
	LCD_String
	LCD_Addr
	LCD_Pos
	Character Generation
	LCD_CharGen Example
	LCD_CharGen8 Example
	ASCII Code Manipulation
	ASCII Table
	Upper and Lower Case ASCII Codes
	Hexadecimal to ASCII conversion

	The Serial Communications Interface
	Initializing the Serial Communications Interface
	SCI0 Library
	Communicating through the Serial Communications Interface
	Terminal Emulation
	SCI0_TxString
	The VT100/VT52 Terminal
	Escape Sequences
	Floating-Point Math in ANSI C
	<stdio.h>
	<math.h>

	Interrupts
	Interrupts in S12XCPU Assembly Language
	Interrupts using ANSI C
	Input-Driven Interrupt

	Accurate Timing
	Periodic Interrupt Timer (PIT)
	Enhanced Capture Timer
	Timer Initialization
	Setting the Timer Compare Event Duration
	Delays vs. Intervals
	Delay Function for Misc_Lib
	Interrupt-Driven Timer
	Real-Time Loop
	Input Capture and Pulse Accumulation
	Input Capture
	Pulse Accumulation

	A To D Conversion
	Setting up VRH
	Configuring ATD0
	Using ATD0

	Pulse-Width Modulation
	Generating Waveforms
	True Pulse-Width Modulation

	I2C Bus
	Basic I2C Communication Using the 9S12X
	LTC2633HZ12 I2C DAC – 16-bit Data Writes
	MPL3115A2: Standard 8-bit Reads and Writes
	M41T81 Real-Time Clock – Standard 8-bit Reads and Writes
	Position Information with the LSM303DLHC – Standard 8-bit Reads and Writes
	3-Axis Accelerometer
	3-Axis Magnetometer and Temperature Sensor
	Device with 16-bit Internal Addresses (e.g. EEPROM) – Write and Read Functions
	I2C Reliability Measures

	Parting Words

