Introduction to
Embedded Systems
CMPE2200

AN INSTITUTE OF TECHNOLOGY COMMITTED TO STUDENT SUCCESS

NAIT CoursePack CP1503

Revision R12

All Rights Reserved

This publication © The Northern Alberta Institute of Technology (2019). All
rights are reserved. No part of this publication may be reproduced, or
transmitted in any form or by any means, or stored in a database and retrieval
system, without the prior written permission of the copyright holder.

Address all inquiries to:
The Northern Alberta Institute of Technology
11762 - 106 Street, Edmonton, Alberta T5G 2R1



(This page intentionally blank)



CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Table of Contents

Topic 1 — Embedded Systems Theory and the 9S12X DEVICE ......cccuuiiiiieeeeiceciiiiee e eecrtere e e e e eennaee e e e 1
Required SUPPOITING MALETIALS .......eeuieiieiieciieiieie ettt ettt et et e e etesatessee st esseenseessesssesseenseensennsesnnennes 1
RATIONALE ...ttt h ettt et e a e et e b e bt e a bt e st e s bt e eb e e s bt e bt ea et ea e e eh e e b e et e e beenaesaeenae 1
EXPECLEA OULCOMES ....vveeeveieiieeiieectie ettt eette ettt et e ettt estee e tee e saeestte e see e sseensseessseesseessseeassaessseensseensseessseenssesnsseensses 1
WRETE AI'C YOU A7 ...oouiiiiieiiieiiieeieete ettt ettt et te et e st e st este et e esseesteesee s aenseenseensesssesseeseanseenseansennsenseenseensennsesnnennes 1

EmMbedded CONTIOIIEIS ...ttt 2
The MCIS12XDP512 MiICTOCONLIONIET «...c..eiiiiiiiiiieiieii ettt sttt ettt sttt be et e nae 2
The CNT MCIS12XDPS512 T/O BOAIA......cueeuieieieieeiieieeeetie ettt ettt st ettt et e e e sbe e ebeeseeneeneenean 5
TYPES OF INEEITACES ..veeuvieiiieiieciieteete ettt ettt et et e e s eee s st e st enseenseesse et aenseenseensesnsesnsesseasseenseensenns 11
POTT AQAIESSINE ...ouveeniieiieie ettt ettt et et et e e te st e s st e st e st enteesseessesseanseenseensesnsesseesseanseenseenseensenssensannsens 12
SWILChES ANA LEDS ...ttt ettt ettt b e bt ettt st s aeesb e et entees e e eb e e s be e b e enteemaesaeenae 14

S12XCPU Assembly Language and the S12XCPU Microprocessor COore..........ccooveeveeeerereenennnn. 16
Accumulators and REZISIEIS .......ccieriiiiieiicieciest ettt ettt et e st e bt e beesbesnaesaeesseanseenseenseensensaensaensens 17
IMLEITIOTY ...ttt ettt et ettt bttt e s b e et e e bt e e bt e s abeeeabee s e beeeabeeeabbeeabeesabeeeabeeeabeeenbteeabeeebee s baeebeeeate 19
LY 1S3 T o ALY ' BTSSR RRPURRURTRIN 21

Topic 2 —=Microcontroller ProgramminNg..........ceeceereereerierieeieeeesiee sttt ettt sr e s saeesnesbeesseenneesnees 22
Required SUpPPOTting MAtEIIALS ......ccueeiiviieitieiiieeciee et ete et et e et e etee et eeteeeteeesbeesstaeesseesssaeesseesnsseeseesnsaeenseennns 22
RALIONALE ...ttt ettt et e b e e bt bt ettt sa e bt e bt eb e oot et st bt bt ebe et eneen 22
EXPECLEA OULCOIMES ....eouveeieiiiesiieeiieieete et e e tte st e bt esbeesaesatesseesseesseenseassesssessaenseenseensesnsesaeesseenseenseanseensenssensannsens 22
CONNECLION A CHIVILY ...vteiuiieiiieiiieeteesttestee sttt e steestteesbeessteessseessseessseessseesssaeassaessseensseessseensseessseessseessseensseessseensees 22

Assembly Language FUNdameEntalS. ... 23
ASSCIMDIET DITECLIVES.....iutitietieiieitetetete ettt ettt sttt b ettt et b e sb e eb et et et sae bt ebeeueeneennen 23
INSEIUCTIONS ..ottt ettt st b e bt eb et et et st be s b e ebeeat e st et et e bt sbeeb e ebtes s et et e besbeebeebeeutentens 23
Rudimentary Debug@ing SKIlIS..........coouiiiiiiiiieiieeee ettt st sttt et e bee b 26

Documentation and COMMENES ..ottt 28
USING the SKEIEtON.EXE FILE ....eeiuiiiieiieiieie ettt ettt e b e nbesaaesetesseeseenseenseenaensaensaensens 29
FLOWCRAITING ... eeiieiieie ettt et et e e st e s st e st ense e st e esseesee st enseenseensesneesseesseenseenseenseensenssensannsens 31
SUDTOULIIES ..ottt ettt et st s bt et e e bt ea et e et e e bt e b e e bt e bt emeeeaeesheesbeemeeenteenteeb e e beenbeenteennesaeenae 32
Libraries 0f SUDIOULINES .........oiiiiiiiiiiieie ettt ettt et et ettt esaeesbe e bt et esteeseeebeenbeenneas 33

S12XCPU AdAreSSiNg MOUES .........coovouieieeeeeeeeeeeeeeee ettt ettt es et s e ees s aeas e 35
INRETENt - TINH ..ottt bbbttt et et b e bbbt st e e et et saeebeebeeatentens 35
IMMEAIALE = TIMIM ...ttt ettt ettt s b e s bt et et e ea e eb e e eb e e b e e bt et e eatesaeenbee bt enteenteene 35
EXIENAEA — EXT oottt ettt et et b e bt e bt et e a b e s et e satesbe e bt et e en et enteebeenbeenbean 36
DIIECE — DIR ..ottt ettt b e s a e bt ehe bt ettt bt bt bt bt et et b e st b e bt ea et eaeen 36
RELALIVE — REL ...ttt ettt ettt ettt et b e st eb et et et st e bt sbeeae et ennen 36
Indexed — IDx, IDx1, IDX2, [IDX2], [D,IDX] ..cveeeiieeiieeiieeieeeiiecteestteste et e steeseveeseveessseeseseensseessseensseesssesnses 38

NCP1503 Table of Contents Page i




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Frequently-UsSed INStIUCHIONS. ........cecvieiieiieieeiiesiteste ettt teste st ettt e et e eeaesseeseeseensesnaesseesseenseenseenseensenssensaensens 39
Masks and Bitwise BOOIEAN LOGIC.........c..oooviuiieeeeeeeeeeeeeeeee et enas 41
Commands affecting an entire register or MemMOry L0CAtION........cccueiiiiiiiierieiieeee e 41
Commands affecting SCIECtEd DItS .........ccviiierieieiieie ettt ettt e st eteeaesneesaeesseenseenseens 41
Commands responding t0 SEIECtEA DItS.........cciirieriieiiieiieieceete ettt te et eaesaesaesseesseenseenseens 42
Using Variables and CONSEANES ..o 43
Programming iN C ...ttt et ettt ettt et e te e et et e et e e teeteereere e enns 45
Setting Up an ANSL C PrOJEC ... ..ecuieiieieeiieriieieeie sttt ettt ettt e e e aessaessee st enseenseensesssenseenseenseensesnsennes 45
ANST C SKEIEION FL@ ...ttt ettt ettt st b e st eb ettt et beebe et eaeeneen 46
Switches and LEDS With ANSIT C ..ottt 47
FUNCHIONS ..ttt ettt h et e bttt ea e e bt e e bt e bt et e em bt s eeesatesbe e bt enteeneeeneeebeenbeenneas 47
LIDraries Of FUNCHIOMNS.....c..co.iiiiiiietiee ettt sttt et b e st b et eb et et ettt be bt eaeeaeeneen 48
SUITITIATY .ttt ettt ettt ettt et e bt e e bt e eabeesabeeeabeesabeeeabeesabeeeabeesabeeeabeesabeeeabeesabeesabeesabeesabaesabeesaseenn 48
NUMERC ManiPUIGEION ...ttt ettt ettt eaeeaennenas 49
Understanding BaSe 10 .......ccueiiuiieiiieiiieeiee et eite et ette et e estee et e ebeesbaeeteeestaeenseesnsaeanseesnseeesseesnsseenseessaeenseennn 49
Converting Binary t0 DECIMAL...........ccvioiiiieiieiieiieie ettt ettt ettt e esae st aesseesseeseensesssesseasseenseanseans 49
Converting Hexadecimal to DECIMAL............ccieriiiiiieiiiiecieciieie ettt ettt e e aesnaeseeesseeseenseens 50
Converting Hexadecimal t0 BINATY ......cccuiiiiiiiiiieiiieciieeitecteestt sttt ste et sveesiveeseaeessaeeseaeessseessseensseesssaensnas 50
Converting Binary to0 HeXadeCImal ..........ccccuiiiiieiiieiiieeiiecieeeie sttt ettt ettt et e e seveesaseessaeesnseesnsaennas 51

8 BIt ATTTIIMELIC ... ettt ettt b e st b ettt et sb e bt e bt eb et et et e st e b nbe bt et et enee 51
Working With 2°S COMPIEIMENL.........c.eccuiiiiiiieiierieeee ettt ettt et e st eseebesaeseeesseeseenseenseessessaessaensens 52
Topic 3 —Interfacing With Internal and EXternal DEVICES......ccccovvcuiiiiiiiee ettt e e rareee e 53
Required SUPPOITING MAETIALS .......eevieiieiieieetiestieseete ettt ettt e et e st e st e beenbessaeseeesseenseenseenseensensaensaensens 53
RATIONALE ...ttt et h ettt et et eeb e e b e e bt et e ee bt saeeshtesbe e bt et e en et eaeeebeenneenreas 53
EXPECLEA OULCOMES ....veeeevieeiiieeiieeiieeiteeite et e et e e bt e etee e beeeaeeesbeeesseesssaeesseeansseensaesnsaeanseesnsseenseesnsseeseesnsesanseennns 53
CONNECHION ACTIVIEY ...eeuvieirietieetiestieteetesteettestteteesteesteassessaeseenseessesssessaesseenseenseanseassessaensaensesnsesnsesnsesseasseenseenseans 53
DISCIAIIMIET ...ttt et h et a et et b e et e b e ebeeb et et et e sb e e bt ebeeb b et et et e sae e bt ebeeueeneennen 53
Interfacing the ICM7218A 8-Digit LED Display DIiVer.......oo i 54
ICM7218A Programming TabIES .........ccceeiiuieiiiieiiieiiieriie et este e st esteesveesaaeesaeesabeessbeessseessseessseessseensseenssesnses 56
Sending Data to the ICMT2I8A ......oceieieieeeeee ettt ettt ettt ae st e st e st e st enseensesssesseenseensesnsesnnennes 57
Seven Segment Display Library COMPONENLS .........ccueeveruieriieiieieeiesiesteeseestesteseesseesseenseessesssesseesseessesssesssesnes 58
Seven-segment Display Control Using ANSIT C.....oouuiiiiiiiiiiiiieieieseeee ettt 59
TS TeT < 5o DR 59
TS ATt 5o X TSR 59
Binary-Coded Decimal Representation and Manipulation............c..coooooiiiiiciceeceeeee 61
Converting Hexadecimal Values t0 BCD .......cccviiiiiiiiiiiieciieciee ettt ettt sve et sveeseseesnaeessseesnsaennnas 62

1A o 5 1o 2 WP 63
HEXTOBECD ...ttt ettt et ettt e s e bt et et st s e saeesae e bt eat e enneeanesteenbeenrees 64
BODTOHEX -ttt ettt ettt ettt st e st e st e et e et e ea e e eb e e b e e bt e bt ee bt seeeshteebe e bt enteea et eateebeenbeenrean 65

NCP1503 Table of Contents Page ii




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

SWItCH MANAGEMIENTE......o.oeieieeeee ettt ettt es et eas et sees s eaean e 67
Detecting Switch Change 0f STALE .........cocuiiiiiiiiieie ettt sttt ettt eaee b e sbeeaeas 67
DEDOUNCINE. ...cetiieiiieeiie ettt eiee ettt e et e et e et e e bt e e beeesteeetbeesseeesseeesseeessaeesseeensseesseesnsseenseesnsseenseesnsseenseesnsaeenseenns 69
SwCk() Debounced SWitch ROULINE ........ccveiiiiiiieieeie ettt ettt ettt e ssaessa e seeseennesnneses 69

Parallel Interfaces: Get ON the BUS ...t 70
DIALA BUS ...ttt ettt h e b e h e bttt e e bt s et e shteehe e bt et e en et eneeebeenbeenbean 70
AAIESS BUS ...ttt ettt a e e bbbt et et et ehtenh e et e e bt ea et ateebeenbeenrean 70
COMNIOL LINES ..ttt et ettt b et he et ea et e s b e bt sbeeb e e bt e st et e st e b e saeebeebeententens 70

LCD Displays Using the Hitachi HD44780U CONTrOler.........coooivoveieeeeeeeeeeeeeeeee e 71
The HD44780-controlled LCD on the 9S12X Development Kit.........c.ccccveriieiiieniiienieeiiesie e 71
(0315 151023 USROS 71
HDA4780 INSLIUCTIONS. c.. ettt sttt ettt et ettt he et eat et ettt s et b e ebeeb et et e besa e ebesbeeb s et et e besaeebesbeeueeneennen 73
LCD Controller INTHAIZATION .....c..oouirtiriiriiriieeeiietetente sttt sttt sttt et et st b e sttt et e b saesbesbeeaeeaeeneen 74
| 51 5 2 ' OSSPSR 75
| 51 5 2 1 OSSPSR 78
LD BUSY 1ttt et b e et bt et s b e bt e bt e e bt e bt e e bt e s bt e e bt e e bt e ebee s bt e ebee e baeebeeeate 78
LICD CRAT 1ttt ettt b e s h bbbttt b e et bbbt et et b e et be bt ettt eneen 79
LCD . SHIIINE ettt ettt et et ettt s et e s b et ema e e et e e st e e bt e bt e bt e bt ee bt e et e ehteehe e he e bt en et ente bt e nbeenbean 79
LCD  AGAT ettt ettt a ettt eh et a e Rt et et e teea e eheeaeea e et et e beeteebeeneeneeneenean 80
LUCD  POS ettt bttt b e h e b h e h ettt et bbbt et e b b st be bt eae et eneen 80
CharaCter GEMETALION ....c.veveeeiuieitetete sttt ettt ettt st et sb e eb e eat et et e st e bt sbe e bt eat e st e st e st e e bt sbeebeebtes b et et enbesaeebeebeeneentens 81
LCD_CharGen EXamPIe.........ooioiiiiiiiiiieeietes ettt ettt ettt et st st e sae et et et eaeeebeenbeenbeas 83
LCD_CharGen8 EXAMPIE. ......cc.coiuieiiiiieiiieiieitieit ettt ettt ettt sb e bt ettt s eeesetesbe e bt enteeneeeneeebeenbeenneas 84
ASCII Code ManipulatiOn ..........ccveriieruieiieieeiesiesieesteetestesstessteseesseeesessaessaeseeseansesssesssesseenseenseensesssesssesseensens 85
ASCITTADIE. ...ttt ettt et e b e et b e eh e eb et et e b se e bt sbeeb e et et et e saeebesbeeueeneennen 85
Upper and LOWer Case ASCIT COAES ....ccuuiiuiieriieiitieeiie ettt esieeesteesiteetteesateestveeteestveesseessseeessseesseesseesnsseesseesnns 87
Hexadecimal t0 ASCIT CONVEISION ....eutiiiiiiiiitieitienteete ettt te sttt et ette et esbe e bt eteesteseeesaeesbee bt enteeneeeneeebeenbeenneas 87

The Serial Communications INtErfacCe ..o 88
Initializing the Serial Communications INtEIface ..........c.eccverieiieiiiiii e e 91
N0 (00 3513 ¢ 2SS 95
Communicating through the Serial Communications INtErface...........ccevvveeriieriiieniieiieeeieece e 96
Terminal EMUIATION ......co.iiiiiiiitit ettt ettt et b e s bbbt et e b et et saeebeebeeaeennens 97
SCIO TXSIINZ ettt ettt sttt et ettt st b e bt be et st et e sa e bt sheebeebeea b et et e sbesbeeb e ebeebtest et e besaeebesbeeue et ennen 100
The VT100/VTS2 TeIMUINAL......coiuiiitiiiiiieiie ittt ettt st sttt ettt ea e sbee s b et e ebeesaeeaeeseeenaee 102
ESCAPE SEQUEIICES ...eevvieiiiieeiiiecieeeitestte et et e et e st e e bt esabeeesbeessbeeesseessseeesseesssaeassaessseeasseesnsaeasseesnsaensseesnsesnnsenns 102
Floating-Point Math in ANSIT C.....ouiiiiiiiiiii ettt ettt sttt sttt be et besbeeaeentens 105
CEEAI0 I ettt bt ettt h bbbttt b e h e bt et e h et be bt b ebe it entent 106
B 10111 T s OO OO TP USSR SPSRSPSRRTONt 107

LI TUPTES ..ottt ettt ettt ete et et et e et e eteeaeeteese et et e et e eteeaeeteeneennennens 108

NCP1503 Table of Contents Page iii




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Interrupts in SI2XCPU AsSembly LaNGUAZE ......cccuvervieiieiieieeiieciierie ettt see sttt eeeenteeeaeseaesseeseenseennesneesns 108
INtErTuPtS USING ANSI C ..ottt ettt et e et estae e ta e e sabeetaeessseessaeeseeeasseesseensaeensseensseensnennes 112
INPUL-DITVEN INEETTUPE ....veeiieeiiieeieeeie ettt ettt ettt e se e ettt e s tae e taeesaaeesaeessseessbeesseeasseesseensaeesseensseenseennes 114
ACCUFAEE TIMING .ottt ettt et sb e b et e e teete et b essesbasbeeseeseessessessassesseseesesssassessessanns 115
Periodic Interrupt TIMET (PIT).....cccooiiiieiieieeie ettt ettt et e e st e e eseensesnaesneesseenseenseensenns 115
ENhanced Capture TIMET .....c.ceecuieeiieiiieeiieeieeeitestteeteesteeeteesbeeebeeseteeesseessseeesseessseessseesnsaeasseesnseesssessseennseens 117
TIMEr TNTHAIIZATION ....ceiiieiieeeiee ettt ettt st b et e bttt e et e st e s b e e b e et e emtesneesaeenaie 119
Setting the Timer Compare EVent DUIAtioN ............ccviiiiioieiiienieieeie ettt sttt eneessaesseenseas 121
DElays VS, INTEIVALS.....couiiiiiie ettt ettt et e st e te e te e e e esaeesee st eeseenseensesnsesnnesneesseenseenseenneans 122
Delay Function for MISC LD ....coiuiiiiiiiiiieieeeee ettt st st ne e et eae 122
INEETTUPL-DIIVEIN TIIMET ....eeiuvieiiieeiieeiii et eete e et este e st estteeseae ettt essaeesaeessseesseessseensseesseensseenssesnsseenseesnsseanssennes 123
REALI-TIME LLOOP . ..ettetieieeie ettt ettt et et et e et e s e e s aee s st e st enseenseanseesaensaenseenseensesnsesnsesseesseenseansennsenns 126
Input Capture and Pulse ACCUMUIAtION .........cceevieriieiieiieie ettt e s e enseeneesnneens 128
TIIPUL CAPLUIE ...eeeiiieeiieeeiee ettt ettt et ettt e st e e sttt e sateestbe e saeessaeessaeessseensseessseesseensseensseensaeensseensseensseensseensnennss 128
PUlSe ACCUMUIATION ....cuiiiiiiiii ettt ettt et e at e e b et e bt e bt et setesaeesbeenbeeneeeneeenneene 130
A TO D CONVEISION ..ottt ettt b bbbttt ettt b ettt es 132
SEUINEZ UP P RE ettt ettt et ettt et b e bbbt ea b et et e b s aeeb e ebeeb b et et et e saeebesbeebe et ennen 133
CONTIGUITNG AT ....veiiiieeieeetieeeee ettt ettt e st e e sttt e seae e taeessae e taeessseessseessseensseessesssseessesnsseessesnsseensnennes 134
USINE AT <.ttt b ettt ettt s a e s heesb e et e e a et e et e eh e e sb e e b e e bt embeembesatesbeesbeenaeenseenteans 137
PUISE-WIdEh MOAUIBLION ...ttt 138
GENEratiNg WaAVETOIIIIS ......eiuiieiieitieiieie ettt ettt et e et e e besaaesaeessee st enseenseesseesaensaeseenseensesnsesnsennes 139
True Pulse-Width MOAUIATION ......ooiuiiiiiiiiieie ettt sttt s 144
T2C BUS .ottt ettt ettt ettt ettt n e 147
Basic I’C Communication Using the 9ST12X ........ccoiriiieieieeeeieeeeeeeeeeees oo sete e es e sennansenesns 149
LTC2633HZ12 I2C DAC — 16-bit Data WIILES ...cvvuvereieierieierereiiiieesieieseteteessssae s st se s s s 152
MPL3115A2: Standard 8-bit Reads and WIIES .......ccceriiriiriiiiiiieriee ettt 157
M41T81 Real-Time Clock — Standard 8-bit Reads and WIIeS ........cccceveeriiiiiiniiiienieceeecee e 160
Position Information with the LSM303DLHC — Standard 8-bit Reads and Writes.........cccecveevrceerienveniienne 163
3mAXIS ACCEIBTOIMIELET ... ettt sttt ettt et b et b ettt st besb e eb e e bt e st et e st e b sbeebeeaeeaeenee 163
3-Axis Magnetometer and TemPErature SENSOT .......cc.eeuietirieriertierieeie ettt stee st et ettt eteesbeesbeebeentesneeseeenae 168
Device with 16-bit Internal Addresses (e.g. EEPROM) — Write and Read Functions............cccccocevienieninnnn. 171
I2C RElIADIIItY IMASUIES ........vvcvceeeeeeeeveseeeteteseseeeeeesesesesesesesesesseessasasesesesesesesesesessessssasesesesesesesssnssssassesesesesesenns 172
PArting WOIAS ...ttt ettt ettt ettt et s et ettt et e s et a e st ennen s 172

NCP1503 Table of Contents Page iv




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Topic 1 - Embedded Systems Theory and the 9S12X Device

Required supporting materials
e This Module and any supplementary material provided by the instructor

e Device documentation provided in the appendix of this CoursePack
e CNT MC9S12XDP512 Development Kit and 12 VDC Power Adapter
e USBDM Pod or BDM Pod and “A to B” USB Cable
e CodeWarrior

Rationale

Embedded microcontrollers are at the heart of much of modern technology, ranging from
automobiles to phones to appliances. An understanding of, and ability to manipulate, these
devices is of paramount importance to the Computer Engineering Technologist.

Expected Outcomes
The following course outcome will be partially addressed by this module:

Outcome #1: Develop and debug assembly language programs using an Integrated
Development Environment (IDE).

Outcome #2: Create assembly language programs that manipulate data using operations
and expressions.

As this course progresses, you will refine the basic skills and understanding of embedded
systems and assembly language programming you learn as you complete this topic.

Where are you at?

In most automobiles today, there’s at least one “computer module”, controlling the door
locks, brakes, ignition, fuel injection, lights, and engine monitoring, just to name a few of
the diverse applications of the microcontrollers in the system.

When using your computer, if you hit “print”, you expect to get ink on a sheet of paper,
following a pattern you see on-screen. In order for that to happen, though, at least one
microcontroller in your printer kicks into action, activating motors, solenoids, relays, LEDs,
and probably an LCD display, all the while monitoring a set of switches on the front panel in
case you decide to pause or cancel the print job, along with a bunch of switches and sensors
that check for the presence of paper, a paper jam, or an empty ink cartridge. The micro-
controller also communicates with your computer, providing status messages or alarms.

These are just a couple of examples of embedded microcontrollers at work, doing the
background work we rarely think about, until something goes wrong. Sometimes, even if
something does go wrong, the microcontroller might recover before you even notice.

Wouldn't you like to be in control of a device capable of such a diverse array of abilities?

NCP1503 Topic 1 Page 1




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Embedded Controllers

When it comes to working with a microcontroller like the 9512X, neatly dividing up what
you need to know into discrete packages is nearly impossible: In order to interface with
peripherals, you need to know how to write programs in S12XCPU Assembly Language
and/or a higher level language like ANSI C, how to address registers and ports, how to do
bit-wise masking, how to get around the Integrated Development Environment (IDE), how
to debug a program, and so on. Consequently, this CoursePack will not be divided into
nicely packaged “Objectives” that cover one concept each. Instead, you will be introduced
to the main outcomes for a particular module, and will be taught whatever else you need in
order to master these outcomes.

What's the difference between a microprocessor and a microcontroller?

A microprocessor is a device that can be programmed to perform computational or
decision-making tasks following instructions found in program memory, as it manipulates
addressed locations in storage memory. Although these storage memory locations may
actually be digital logic interfaces (for example, a bank of switches for input or an array of
LEDs for output), the microprocessor treats all addressed locations as memory.

A microcontroller consists of a microprocessor embedded within a collection of peripheral
modules, each designed to carry out specific tasks under the control of the embedded
microprocessor. The microprocessor-to-peripheral interface is designed to operate
“seamlessly” - all controls and handshaking are managed internally, providing the user with
a greatly-simplified task when it comes to programming (although you may not feel that
way initially — if you doubt this, try getting a microprocessor like the MC6809 to talk to a
Comm port, as compared to asking your 9512X to use its built-in SCI Port!)

The MC9S12XDP512 Microcontroller

In the “"Data Sheet” for the MC9S12XDP512, you will find a block diagram of the
microcontroller you will be working with on page 35. This is a huge document that you will
occasionally need to access. There’s no need to have a paper copy of this (it’s over 1300
pages long!), but make sure you can access it. The link below is in Moodle, too.
http://cache.freescale.com/files/microcontrollers/doc/data sheet/MC9S12XDP512RMV2.pdf

The block diagram, partially annotated, is shown on the following page. The parts that are
labelled are of interest to us in this course. You may, for your own work, find that you can
use other modules that aren’t covered here, such as the Serial Peripheral Interfaces (SPI)
used for talking to a number of commercially-available devices, or the Controller Area
Network Buses (CAN Bus) used as the standard communication interface between electronic
devices in automobiles and other vehicles.

One thing that should stand out to you when looking at this block diagram is that the
microprocessor is deeply embedded in this device, surrounded by a wide range of
peripherals, interfaces, and ports that are under its control — hence the term
“microcontroller”.

NCP1503 Topic 1 Page 2



http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12XDP512RMV2.pdf

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Chapter 1 Device Overview MC9512XD-Family
Ato D Converters

M e mory '—N 512/384/256/128/64-Kbyle Flash
32201 M 4MOBM-Kbyte RAM Interru pt MOdUIe
4(2/1-Kbyte EEPROM
Vpinp —=]
1 Voop — A s &
Microprocessor = 2| R Serial Communication
IKD:II‘Z —-—
Vag1z =€
i Single-Wir
BKGD | Euckg’ound“h\*
| Debug Module | CPU2X
XFC <3| Enhanced Mulllevel
Vooey, == Clock Intemupt Module AN1B
Vggm *— PLL  and Reset Periodic Intemupt
EXTAL —] Generation | COP Watchdog
HTAL —-—| Module Clock Monitor Pai X%ﬂTg PADZT &
. M Brockockds | ripheral Co-Processor PAD22 -
Timer TEST — - CAD23 3
e 270
EE? e = RO et E
PE2 | les| RAWIWE ] - = EE 5
PE3 3| w | ¥ [« TSTREADSEROMCTL "*“"““;‘?" apyfe E 8
PE2 HE D las ECLK — Gl Ll pagath =
PES <> |° |«a| MODARETESIO [£- P15 -
PEG <] l=| MoDBTEGRT sl il 5
PET = [l ECLEX2NCIRS F—— ]
ADDRIE PKO - | |== IGSTATO - SE? E
[ £ £
Aoomis Piz <> | _ [l iaamar B
ADDRIS PK3 <3| x| ¥ | IaSTATS 5 2| rs3 e
o £l B-Bit PPAGE S |B fe=pss 2s
ADDR20 PK4 =€ & | 5 lemf acco Allows 4-MByte le— PS5 e e
ADDRZ1 PK5 =3 [*= ACC1 Program space les PS5 s
R Rl - - HE
ADDRIS PAT | | |es] I ™ EM0 E £
ADDRI4 PAG ] - Timer : - §:1 3 §
Loor12 pas <) g |$ 50 [ E|Efemews 33
ADDRIT  PA3 el 8 | S lem “8°:.§:§ s
ADDRID  PAZ ] =t : e 2 3
A PAt =
ﬁ:ﬁ PAD ?—» 7] [l e Pu7 55
ADDRT FET el | |+ Digital Supply 2.5 V' § §
Al - - /| n -— —
A%:g Egg - - 8 ‘I;nm._ = POTES c=
o =2l == [P
ADDRE PB4 =l 0 | & |wd -
ADDRY PE3 =3 o | D [== g ] 2
) [ =
roont ror <) | [ | eusweasy &--—;&.. AT I°C Bus Control
=] - D5 |
TDS  ADDRO PBO > | |em 2 es| - P27 w n
DATAIS PCT =2 — iy i
== 8T
ourare pos ) | |- 2 [l ] J==e— Pylse Width Modulator
DATA1S PCS =] e =
DATATZ PGS O | [em Y i N P il Esg
DATATT PCI 3| 0 | 5 |+ _g "5 E..,.pp.,
DATATD PC2 -3 = s . e - PS5
DATAS PCT =3 - = e <= PPE
DATAE PCO = | |e= = e - D7
DATAT PDT ] leef 5 o PHO
DATAE  PDE g | = sl i P
DATAS PDS <3| . o -
DATA4 PD4 = 0 | B | =z - sgi
DATAI PD3 == T | S == B E e
DATAZ FDZ 3| ] D] il g tind
DATAT PDT 3| =] b [ iy
DATAD PDO - | =] b g
Figure 1-1. MC8S12XD-Family Block Diagram
MC9512XDP512 Data Sheet. Rev. 2.21
Freescale Semiconductor 35

NCP1503 Topic 1 Page 3




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The microcontroller kit used in this course goes one step further: we now embed the
9S12XDP512 microcontroller into an electronic interface with external peripherals also under
its control. Again, in the following image, you can see that the microprocessor core ends up
being a pretty small, but central, part of the hardware used in this course.

Let's work backwards through the diagram above.

The microprocessor core is made up of a group of registers that you should have become
acquainted with in an previous course (A, B, D, X, Y, PC, SP, and CCR), along with the
actual logic unit and an instruction set. The logic unit acts according to the instructions in
the instruction set, as presented to it in a program written by you and stored in ROM, and it
does all of its work using the registers.

The core operates within the address space. This is where it gets its instructions from (in
ROM). While it operates, it may read from RAM or ROM, and it may write to RAM. More
importantly, though, it reads from and writes to a set of registers that are directly
connected to the microcontroller’s peripherals.

NCP1503 Topic 1 Page 4




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The peripheral modules are the interface with the “outside world”. We’'ve identified a
number of these previously. Between the modules and the pins in the following diagram is
the “"PIM” - Port Integration Module — which allows us either to connect to the peripheral or
to use the pins as "GPIO"”. GPIO is “General Purpose Input/Output”, and refers to pins
available on the IC that can be used individually or in groups as digital inputs and outputs,
under the programmer’s control. On this microcontroller, as with most, almost all of the
pins associated with other peripherals can, instead, be used as GPIO.

The biggest circle represents the electronic interface, which contains all the components
on the printed circuit board. Most of the external peripherals on the printed circuit board
are accessed using GPIO, although the speaker is intended for operation using the pulse-
width modulator module (PWM), the Comm port is controlled by one of the Serial
Communication Interface (SCI) modules, and the DAC is accessed using one of the Inter-
Integrated Circuit (I2C) busses. Here’s how our electronic interface is wired to the
microcontroller in the kit designed for this course.

A tO D header! Chaplel1De\uce0VerviEwMC9§12xDrFﬂmilyREFOZ
through 1 k res|st0rs S12/3841256/126/64. Kbyte Flash P v— (,Z’C v < Trlmmed to 5.120V

Vppa re—T Vooa [=— Ypoa
Vssa [#—1 Vssa [*—

sk 225z _ Pushbutton Switches -

2 lewpaAD03 | ANiT fe—] | PADIH U L D R M
§ lempanos | aniz e e pa012 y Ly ’ 1
&

3220116/14110/8/48-Kbyte RAM

47211-Kbyte EEPROM

Voor
Vssp —|
Vegsen —>] Veltage Rego L

SAE FADDS | AN13 {5 [ PAD13
vsst2 ShgEWiE PADDE | AN14 = < [w» PAD14 ‘\
=] o7 | faks o] e pamte
bebaie | cPuizx me 2o | EDs - Red, Yellow, Green
xFC <> e ANTT - @ |w PADITT ’ 1
Vopew, <—| Clock Interrupt Module an16 =3 |e» pan1s
Vs, +— PLL  andReset | Periodic interupt AN1G = == PADTS
EXTAL —{ Generation | COP Watehdog ANZD | > PADZO
XTAL =+— Module Clock Monitor i “G-‘TE ANZ1 = = PAD2T §
& Breakponts e ANZ2 - | PADZ2 g
TEsT A ] |- AN g
- | T 1600 e te> 210 g
2 B }g« e e BT1 H
> ~TEE <2 fom e 212
PE2 | s RAWARE - 2 <
5 Ty g ) Seroucn oo ez lepre 8 RS-232 Comm Port
PES ] || ECLK -
PES - {==| MODARETAGLO :%Z 50 5 :Ig 2
PES ] {«=| MODB/TAGHI s 8, RS 232 IR P
PE7 | | lwe| ECLKXQXEIRS e e Ort
Ontro ADDR16 PKO €3 f==1GSTATD scio 2] el Lo } €
{ADDRH PK1 <3 el 1QSTAT1 D T p:w 1 -
ADDR1B PK2 <] es] iG5TAT2 sci » o FET S h
soome pa x| | foliosw o Dololp e 2 A S witches
ADDR20 PK4 = | 5 el acCO Allows 4-MByte SEe ) et =2
ADDR21 PK5 = len acCt Program space sPio SCK A Pas 2d
ADDR22 PK6 &3 fe=] aCC2 = [0} PS7 28 -
13| e e s L2 18 /pushbutton Switch
e T s =r=m 1: /Pushbutton Switches
ADDR14  PAS <3| [ Timer TKCAN ftal @ [en] > Pt &c
ADDR13 PaS <> | _ |=n] annel cary AN [ob—| S jeml | [ P2 I |2CO
ADDR12 PAd | g | S | 16-Bit with Prescaler DCAN (| £ e E |3 | prs 7. :
Seven-segment - £|& for mermal Toncbases —ea (| £ [& B[ A 3
ADDR11  PA3 a | CAN2 a 1 o DAC
ADDR10 PA2 w3 | ° |eo] TxCAN [l £ e <> s s
H " RACAN [#——] 2 |- [~ MG g
ADDRY PA1 «gi»{ CAN3 3
Display Control ~=»{ &% %33 | zon - § (AL Iond 56 - Pressure/Temperature
ADDR7 PBT7 w3 | |eel CAN4 <= =,
e 2. et ) - EEPROM
ADDRS PBS <3| | B sciz X = .
AooRs pos < p |8 [ 2 S Kt el | e Pt £E + Real-time Clock
Seven_segmen[ A oom e <k |8 § ey DU Lrrd wa 3T i L B Accel ter/C
. ADDR1 P81 o] = 2| ewswyasy et ooy |ellw|kwis o] 8 | e stz S W + Accelerometer/ompass
Display Data Bus =& 23 | 55| iem— [o 2oormer | 20 €58
o M & WR T ] e v e ]l e RGRB Blue
DATALE PCE ] | areion Seomy 320 PWMO [ KWPD |== le— FPO
s e pia wog Supply 3 P <] KP1 [+ s P
ZehH 1| B2 EeE | o RGB G
g:;::i ;z; E & 'ﬁl VSSA — pwn PWME [l KWP3 [l & | e P2 reen
3 H = WM b [« | ks [+ 8 |& = oPe
DATA10 PC2 <> | £ O Supply 35V H
e T | e e i el e LCD Backlight
B B ; ik e [
o st et M Mg [ | o ] T e e I
DATAT 27 <> | 1% 5 | votage Regutor -5 ey Dl D o RGB Red
s piseer) | gl Rk for] [ [ e
DATAY PD4 |2 == = z
g S || kw3 fen! F [ [ar pH3
ATAT PD3 | b | 5 el g S k
prlirinalgll e | K [t |5 e PHA pea er
DATA1 PD1 | . 3 e o P Rl ::g
DATAO PDO <> b (< >
S e it N M LCD Data Bus

Figure 1-1. MC9S12XD-Family Block Diagram

MC9S12XDP512 Data Sheet, Rev. 2.21

The CNT MC9S12XDP512 1/0O Board

On the pages following, you'll find the schematics for the microcontroller kit, showing how
these connections are actually wired up to provide us with the electronic interface shown in
the previous bubble diagrams and block diagrams. Higher-resolution versions should be
available in Moodle or from your instructor.

NCP1503 Topic 1 Page 5




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

k] [ [l [ E] q E]
e ]
4 ’ I > Sl
. 4%» fﬂ“—“}o - g
e eele R lss ol o
5z 93 53 a o
u i I : i -
;*4'10}" I ééézii:sgé
el o e o
- S > > -
u 1
a2 2z B 3 .
Bl g
A S
| 1T et -
_En __9 e F4 t4|. by
F4t] Fﬂ%..g
AN o {1 £
- 5
(=] =) EEL o R LT
e 2
| e ||
e g
_ 2
3 12
g e 3
g R o [
22 g F4”ﬁ4| 3
’*ﬂ@“" % 3
a : R (0N
1
=GO K o e
T e s
Hp—— s st s
“ E \ a§?4§4" g |
. e g
S 3 .
- :
. K i
s¢

NCP1503 Topic 1 Page 6




Embedded Systems |

COMPUTER ENGINEERING TECHNOLOGY

2z [ ° S © 3 z v
B SI00Z '¥Z AON ]
E apeq usisiay
TISELND | USP | 'EWH 0 NO\ZWod 21 SEa0psamERia
wawnaog alls ‘ps|lesp se AijnauId [euolIppE 03
. [T painol Buis se [em se NdD) sy Jo 1ejewiued ayy Buoje
AEl8CES O paieso| suid peseds " 03 pejnol aie suid pod |1y -
oy .
(AR A AR SN
AL
ElEEE ElE
28 7 Fz
[E1HEhirg EIEE EE
[E1Hslord = B &«
I — H o= G =
I il ol e
3
e Y 3 T 3 3 3 £ T T 3 TII T o
@i 3883328232 PR 3 2 3133
g4 BB TE FadFATR AN TIEERD 83T Wiy
] saaf
e 8494 a0
e e P
] Db
ooz e fome ¥aan g
. el e
2 AN ] ) S ns
QL 560
T‘%K e oo
1 8E . e a0y
BE < Rl
o |ussn | ——= (G HE WP
nor( W |rEeen L < (GLHE]5Wd
s ord—s——=_(GTHEIV0E
& {Tdaon saf—e—=C(GFIRE10S
THAZISAOXEISEN
e o Haoaunl——(Dage
S Tdssa 54—
B L 0545
- [ L=
T gl e el 4 be =
st | o8 e v8d
T _ _ = e esaf——=C (PRSI LOXL  STEE]
e T . s zsal— = (P LHS) L 0X
e = e ] V84 —ge =[P LHEI00X]] As+ LIHEIAGH
oLy - . o owe 054 —g——=C [FLHSI00%E
0zz 0zz = adzz Ell i el
e o ! 50 ] mat—z—=(GIHE]/Ng
nee S v3d T ®» 1 D 3T I T P D DI T DT DT D wSSh 99
2id O s prprppr S EEEEEEEIEEEEEEEIEL S 5
ng+ Z BB EEEEE B 2 28 3 = B o 2 S o ¥
i j = e aanon o1 S5y wsy
] j,_ M Y _m ks _w kalealellefflzft i el kR e émwﬁ o 9 < ON
e FEE] b - 4 e 4 4 A 4 4 A 4 4 4 e,
BRgEgEEacE 20458 T pat rorl SLEEIETEIEE]
ol | X ol s/ s ol s = =) 0|
- = S1ETEIRTEE]EE
- ElE e E 2 E] ] E ]G
I AT
JEEEr | SUEE R E D] E ] E
T = A g E ]
B B
B B
z z
e LI o
s ] F
s HHEHHEHEHT
Lelg Lgle gy lalg]
HE S D D S g A o
pajeindodun - G2 o 40 48KE] WOROG UD PEIEDD| GOAD B8 78 - 5D U Ty AT U, B0 T 0305 LA S 20
pajeindodun -Buieds |0 8oy yBnaiyrst Ar0
w00 b o0 b oo
e ot e s i B I8
: s 5 B 3 T v

| CMPE2200

Page 7 |

Topic 1

| NCP1503



Embedded Systems |

COMPUTER ENGINEERING TECHNOLOGY

L I

SIE SIOZ €2 PN iG]
sjsays ajeq uoisuay
TVSELND USP'L @aY D11 LNThZRRY 1 Sadosade e
wawnaog alg
e
ejades 9
soyiny
SBUTMG 7 SAEIESI (1]
ajuL
ooron

oLo00
ES

— o—
2

3

i

5031
ey

A7
A7
—

raz1
o2,

ool
3

3
¢

3
0
2 2
1
=
= ol
: i
s+ bl
gqB
I S
e /
H = (C1HE) 205
o ol dl s
Ra82 - =7 5 ]7d]
] i adom 5
H . < TZIHE]Ivd
= i 3
el zanol ﬁﬂ.
1
srezarall drezeral
zasia Lasia
R o
T T
- - - - - HOk HOb
TT T T T E%E
_ AT
st01 S Soion Sxion Sonon
sen Sos Sy vy oy _v [CATESINE|
(Z1HE]z10vd] V.A v._
[ETENNE] | o5 ﬂﬁ ﬂ
(Z1HS]010vd] ord e
[T EEE | -
(Z1HS)800vd] S ASe
O—=ZLHs]apmd
pOBELANM 1dr
001
&2
—
(zphozLWED %Ll bt
BT
% ZIHSIONAAD
Sl
e [
— A= (ELHET ]
S0l
E3
TIHETFAAL
10l
]
b
: =
: < LIHg)ang]
(g 10ve] ESPY L8814 LAITDEASWIATD |
(Z1HE)y 10vd] zaz1 | o+ O TR
(AR ETE| !

| CMPE2200

Page 8 |

Topic 1

| NCP1503



z I g S + € 3 v

EXCNY GI0Z "ET AN 1a
slaayg aleQ uoisiay

ZLSBLNT Usp’L'grad DRI LNTVZARY ZISEdonsamsing

Embedded Systems |

DT MG+ 1 Ol [BUAS i
oL o

~

COMPUTER ENGINEERING TECHNOLOGY

= AZLHS)LOxH

ZiHs]Lox]

axy

oxL

spouy 03l

VhapsaaL
5] N -
oy =4

weuinaog t{ﬂ[ H
El o0 g S o
iy

-]

v

z

z

T

—~

(Z1HE]00x]

i’ =71 HS) 00 %]

S

- T +
4690 1|_w O e T Juvn
- anf— o
sy - " ,Jf T
za mulj
= mmlam
Awmmuxxn_m

=

v " L ey KN S - 171

LGH & — =
O T - =

— ZE0Z4D
o liva
o5 5 v s o
. R s -
o M L
TR a M T e B 1
O EPRLLIE AT AN By L@mﬁ e
g oo B o LT A
210 i ool | —]
<3l
£
L prs & =
Pyt e ot = LLLHSIONO)]
weestain
hal
o now (=< TLHE )G
P f < - B 7 ;

Page 9 |

Topic 1

| CMPE2200

| NCP1503



CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

3 g F] q 3
~
iz
ERZ2
3z 23
I} 8°&"
o
2
8 =
= 3
& =
- 9428199 ¢ < 9 < P g |
I—i—m 5w
5 =2
o - ==
g g 2 2 § =l
= 2 z 2 2 z z B
g g g g g 8,z
o2 . ot a2 z ZE=2
8% BE &% 2E 5 238
3 o
| @ _
k= 2
T 2]
of = @
gz 2
Glzag 22 _
2¥Su =2 §5|E o
= & [ o
S I~
= =
= e
o 2
= 4
o =
) &
-
5
L ot H
25
M
B
N g3
§ 04— - =
O = —
v "R o2 [
il i ]
+ 2 50 son Il +
= ol A S7 A
5 or L= Y19+ ane
LECTY @ ) ‘ N
2 El g 3 -
ESS w1y, Sz eoon 1§
3 B T GO0 B
t e = H
— & H
a3 2
L 83 g = H
H @
2 “ o w
i} £ =
g & g
g%
26 25
o o ¥ 2
ES H =
=
o ] E] o
oo z B &
= = L
5 zz z —— Z
: 00 9 4 ¢
S =
H 2 ol ol e g o seoe 5
< 2 HEEE 2 (i I
= 22 B & 2| 2| 3 w8 =
H L3 =
= H B | E
5 i
| o 3 o _
= am =
@ - 3 5
s 43 =X
& =
2 55 EEH
a
ey, Lo+ "
€ g
“ ey, o
il
ane
] S
i
> £
@ g oy,
- “ “ L
£ s =
-4 £
- = = s -
= @
IS &
o >
@ <
2 e
; -
o
=
i}
2 =
= ) H
§0 T 8 o g g
=) A =
- - 5] = -
H =
=8 o =
25 S ElE
] =
H = 5l @
=
F &
v | p) a 3

NCP1503 Topic 1 Page 10




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Types of Interfaces

Since a microcontroller can be embedded in a wide variety of systems, there will, of
necessity, be different types of interfaces required. The following are the main types of
interfaces.

General Purpose Input/Output (GPIO) - GPIO interfacing simply provides or expects
logic levels at pins connected to the microcontroller. Conditions in the connected device are
read into one or more GPIO pins configured as inputs, and control signals are driven out of
one or more GPIO pins, configured as outputs. On the 9512X, as you have seen, most of
the interface pins can be programmed independently to act as GPIO. A logic HIGH or “1” on
our device is +5 V, a logic LOW or "0"”is 0 V.

We will use GPIO to interface to things like the switches and LEDs on our board.

Bussed (Parallel) Interface - A parallel interface involves the simultaneous transfer of
multiple bits of information on separate (parallel) copper traces. The microprocessor in a
personal computer operates in bussed mode. This requires an address bus capable of
locating each unique address in the address space (for a 32-bit address bus, this would be
approximately 4.3 billion possible locations). It also requires a data bus capable of
delivering all the bits required by that location in a single operation, each on a separate data
line (sixteen for a 16-bit data bus). In addition, there will be control lines such as
Read/Write, Enable, and Strobe that establish correct communication between the
microprocessor and the peripheral. On the block diagram, you can see that PTA and PTB
can be used to establish a bussed interface. This would be useful in an application involving
a parallel device or where more memory is required than what is available inside the
microcontroller (which won't be a problem for us in this course). Most microcontrollers do
most of their bus-work internally, taking away the complexity of design and programming.
The 9512X has an internal bus to interface with its memory modules and all of the devices
within which it is embedded. All we need to know is the addresses associated with the
device we want to talk to, what needs to be communicated, and the speed at which
communication takes place, which is based on the internal bus clock or system clock. (For
our board, this is half of the 16.000 MHz crystal speed, or 8.000 MHz.)

In this course, we use GPIO to create simpler parallel interfaces to two of the devices on
board: we use a simple one-way 8-bit data bus with control lines to control a 7-segment
display controller; and we use a two-way 8-bit data bus with control lines to communicate
with a second microcontroller embedded in our LCD display.

Serial Communication - Rather than sending all bits simultaneously on separate parallel
lines, it is possible to send bits one after the other (sequentially) on a single transmission
line (with a current return to complete the circuit). In a system like RS-232 (used by us to
communicate with the Comm Port of a computer using an SCI module of the micro, or for
communicating using a Bluetooth adapter), separate transmission lines are used for
transmitting and receiving. In a system like USB 2.0 or USB 3.0 (used by us to establish a
programming link between the computer and our board through the BDM Pod), a single pair
of conductors is used for communication in both directions. Serial communication requires
protocols establishing voltage levels, timing parameters, and “handshaking” to ensure that
data is actually delivered and received.

NCP1503 Topic 1 Page 11




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Port Addressing

Let’s focus on one set of port pins shown in the top right corner of the block diagram:
PortAD.

Vey [ Vry [ Vry

ATDO VR ATD1 Vp [— Vg

Vppa [ Vopa [*€— Vppa

Vssa [ Vssa [ Vssa
ANO | |J==PADOO ANS | |- PADOS
AN1 |- 8 [ PADO1 ANO |-— |- PADO09
AN2 [« < |e»PAD0O2 | AN10 |=— |« PAD10
AN3 [ g e PADO3 ANT1 > PAD11
AN4 (€ O |[«»=PADO4 | AN12 <~ <> PAD12
AN5 (- ¥ [=» PADO5S AN13 |- 5 < PAD13
ANG [~ 8 [ PADOB AN14 | < |- PAD14
AN7 |« [=>=PADO7 AN15 [~ °‘f - PAD15
AN16 fe— 2 [ PAD16
Enhanced Multilevel AN17 [ DDC > PAD17
Interrupt Module AN18 =— o <> PAD18
AN19 (- [ PAD19
AN20 = [ PAD20
) XGATE AN21 |e—{ |- PAD21
Peripheral Co-Processor AN22 ] | PAD22
AN23 |- - PAD23

The I/O connections shown, PADOO through PAD23 can either be connected to the A to D
converters (ATDO and/or ATD1) or they can be redirected using the PIM blocks shown as
“"DDRADO&ADO” and "DDRAD1&AD1"”. To begin with, we will be using a subset of these pins
as GPIO, because they are connected to three LEDs and five switches on the board (more
on that later).

Notice the different typefaces, fitting into the sidebar for the block diagram. PADOO to
PADOQ7 are in regular type, which means they are available for all flavours of the
9S12XDP512. PADOS8 to PAD15 are in boldface, meaning they are not available on the
smaller 80-pin version of the IC. PAD16 to PAD23 are bold italics, meaning they are not
available on either the 80-pin version or the 112-pin version, which is installed on our
board. Thus, we have access to PADOO to PADO7, which are connected to ATDO, and PADOS8
to PAD15, which are connected to ATD1.

In the Data Sheet, "Chapter 4: Analog-to-Digital Converter (ATD10B16CV4) Block
Description” starting on page 125 describes the full functionality of ATD1, and “Chapter 5:
Analog-to-Digital Converter (S12ATD108CV2)” starting on page 159 describes ATDO.
Clearly, there’s a lot of information required to fully implement this corner of the diagram!

The figure below shows ATD1, and there’s a similar picture later on that shows ATDO. I've
included this figure simply to show one part of the PIM for this set of pins that doesn’t
appear on the main block diagram: ATDDIEN.

ATDDIEN is used to enable the connection between the associated pins and the digital
module. “DIEN” stands for digital input enable. This needs to be turned off for A to D
functionality, but turned on for GPIO activity for any pin that’s used for input.

NCP1503 Topic 1 Page 12




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description

Bus Clock ATD clock

Clock ATD10B16C
Prescaler

A 4

| ETriGo B Trigger

Musx
[ erict X | e » Timing Control Interrupt
‘ eTRIG2 | s

»e %
= »0
L _ _ _ETRiGs B 4/
(see Device Overview I_
chapter for availability

and connectivity)

Mode and Sequence Complete

I| ATDCTL1 ATDDIEN |

v

PORTAD
A
VDDA B

A 4
Vssa E"

= » Successive
VRH o Approximation [
ve B "1 Register (3AR)

anis & and DAC
AN14 B
ant1s X *

aniz2 &

Results

(= () ) )
€] (ox] o [ag] (8] Bont () o8 B (e

=

= =

B B e B B e e e e e e o B

oy b |eo| ra—|

an11 B

anto B * Sample & Hold

ANg [ v s D—' _/ i

ans X ® * ! >
Analog $ Compalator

an7 B4 MUX

aNe B
ans [
ang &
ans

anz B
ant X
ANO X

v
+

|

Figure 4-1. ATD10B16C Block Diagram

MC9S12XDP512 Data Sheet, Rev. 2.21

126 Freescale Semiconductor

One other interesting thing to learn from this diagram is that the labels used in the modules
don’t necessarily correlate to the ones for the whole IC: ANO to AN15 for the module is
actually AN8 to AN23 for the microcontroller!

The ports and control registers are all accessed by the microprocessor by means of unique
addresses. For example, the 16 bits we can access of the 24-bit port labelled PAD occupy
the addresses 027116 and 027916; the two 8-bit Data Direction registers for the accessible
parts of this port are at addresses 027315 and 027Bis. The ATDDIEN (digital input enable)
registers for the accessible parts are found at addresses 02CD1s and 008D1s.

Trying to remember all these addresses, and all the rest of the register addresses we’ll be
using, would be a daunting task. To help with this, the developers at Freescale have

NCP1503 Topic 1 Page 13




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

created an “include” file called mc9s12xdp512.inc that we'll use when we program in
S12XCPU Assembly Language, and a corresponding mc9s12xdp512.h file we’ll use when we
program in ANSI C. This file assigns labels to all the ports (and even to masks for each
pin!). These labels are easier to remember than the hex addresses; just remember that the
labels represent the actual addresses, but only if the “include” file is actually included.

Here’s a little table that summarizes what we've been saying about Port PAD. Notice that
the addresses start with “$”, which, in S12XCPU Assembly Language, means hexadecimal.
We'll use this notation to indicate numbers in hexadecimal instead of using nnnnis, until we
start programming in C - at which point we’ll revert to the Oxnnnn format you’'re used to.

Port Port Name Addresses Function

(Block (mc9s12xdp512.inc)

Diagram)

ADO PT1ADO $0271 Lowest 8 bits

AD1 PTO1AD1 $0278 Upper 16 bits
PTOAD1 $0278 Highest 8 bits (n/a)
PT1AD1 $0279 Middle 8 bits

DDRADO DDR1ADO $0273 Lowest 8 Data Direction

DDRAD1 DDR0O1AD1 $027A Upper 16 Data Direction
DDROAD1 $027A Highest 8 DDR (n/a)
DDR1AD1 $0278B Middle 8 DDR

ATDDIEN ATDODIEN $02CD Lowest 8 Input Enable

ATDDIEN ATD1DIEN $008C Upper 16 Input Enable
ATD1DIENO $008C Highest 8 IE (n/a)
ATD1DIEN1 $008D Middle 8 IE

Switches and LEDs
To access the push-button switches and LEDs on the board, you need to know the following:

Port or Register Address Notes
PT1AD1 $0279 Order: RYG ULDRM
DDR1AD1 $027B HIGH = Out, LOW = In
ATD1DIEN1 $008D HIGH = Input Enabled
NCP1503 Topic 1 Page 14




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The code snippet below shows what needs to be done to appropriately activate the part of
PAD that’s connected to the switches and LEDs, written as a subroutine:

SW_LED Init:

* ok %k ¥ %

*

N *

;% RHegisters affected: none

;% stz LEDs as outputs, switches as inputs, =ets outputs to zero
*

SW_IED Init:
CLE FT1ADL cmake sure LEDs are coff (no effect on switches)
HOVE #x11100000, DDE1ADL (LED= as outputs, switches as inputs
HOVE #%00011111, ATDIDIENWL cenable switch inputs
RTS

Notice that, since we want to directly manipulate the conditions of all eight bits in the three
registers, we use "MOVB" instead of "BSET” and "BCLR”. BSET and BCLR only affect the
bits indicated in a bit mask, leaving the other bits unchanged.

Also, notice the use of “#", which tells the assembler to move the byte indicated into the
associated register (immediate addressing mode).

Another thing to notice is that, before we turn on the output pins in the Data Direction
Register, we initialize their values to prevent an unwanted condition when the pins become
enabled as outputs. This is a wise thing to do whenever you control any port intended to be
used as outputs. In the boot condition, all ports default to inputs, and often the default
value for each pin is SET to 1. In the case of the LEDs and many other attached circuits, we
don't want the LEDs or other circuitry to be initially on, even for a split second. (Imagine if
the connected circuitry was the detonator for a rocket or explosive, or perhaps control for
the two transistors in a CMOS motor controller!) If you watch the memory window as you
step through the code above, you’ll notice that the value written to PT1AD1 doesn’t appear
until after DDR1AD1 is changed - the microcontroller holds the value previously written to
PT1AD1 in a buffer, and sends it out as soon as the pins are changed to outputs.

As we move through this course, we'll need to access a variety of other peripherals. What
you have just learned about the switches and LEDs will serve as a guide to accessing and
controlling each of these.

You'll notice that, as a microcontroller programmer, you need to know a lot about the
hardware you're working with. That includes the microprocessor at the heart of the
microcontroller, the built-in peripherals, and the electronic interface connected to the
microcontroller. This information is typically available in Data Sheets and Schematic
Diagrams.

Due to time limitations in this course, you will typically be directed to the appropriate
information in these supporting documents. However, in real life, you will need to develop
the skills required to find, interpret, and apply the necessary information.

Each microcontroller application will be a stand-alone system, typically different from any
other system in the world. Searching the Internet will very likely not produce the answers
you're looking for: you're on your own! Looking at this a different way, you are the one in
control of the system you're designing, and that can be a very empowering experience.

NCP1503 Topic 1 Page 15




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems |

S12XCPU Assembly Language and the S12XCPU Microprocessor Core

In a previous course, you should have been introduced to the S12XCPU Core and to
programming in S12XCPU Assembly Language. The following will be a short refresher.

Most of the pertinent information you’ll need for programming is in the "S12XCPUV1
Reference Manual”, which is for the S12XCPU microprocessor that’s at the core of our
MC9S12XDP512 microcontroller. You should download this document. Here's the link to
access it:

http://cache.freescale.com/files/microcontrollers/doc/ref manual/S12XCPUV1.pdf

It is also available at the Moodle site for this course. The document is over 500 pages
long, but if you want a ready reference in paper form, print Appendix A (Instruction
Reference). It contains a summary of the various instructions and of the support
documentation to help you use them.

The following is a clip from the first page of the appendix.

7 A o 7 B 0| 8-Bit Accumulators A and B
or
15 D 0| 16-Bit Double Accumulator D
| 12 X D‘ Index Register X
| 15 Y 0‘ Index Register Y
| 15 SP O‘ Stack Pointer
| 15 PC 0‘ Program Counter
CCRH CCRL
‘ 0000 0 IPLZ0O] SXHINZVC ‘ Condition Code Register
Five Most Carry
Signiﬂcant Bits Overflow
Always Read 0
Zero
Interrupt .
Priarity — Negative
Level
Mask (Disable) IRQ Interrupts

Half-Carry
{(Used in BCD arithematic)

Mask (Disable) XIRQ Interrupts
RESET or XIRQ Set X,
Instructions May Clear X

But Cannot Set X

Stop Disable (lgnore Stop Opcodes)
Reset Default is 1

Figure A-1. Programming Model

The S12XCPU microprocessor is a complex array of digital logic gates, arranged to follow
algorithms hard-coded into the logic. These algorithms need something to work on - that’s
where the “accumulators” and “registers” come in.

NCP1503 Topic 1 Page 16



http://cache.freescale.com/files/microcontrollers/doc/ref_manual/S12XCPUV1.pdf

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems |

Although the microprocessor can perform some actions directly on memory locations (Direct
Memory Access or DMA) and performs other actions internally (“inherent” commands), the
vast majority of actions are performed on values loaded into the accumulators and registers
in the device itself. The following is a brief description of each of these.

Accumulators and Registers

Register is the general name for a latch or buffer that holds a set of bits for the
microprocessor or circuitry.

An accumulator is a special type of register that can be manipulated in a wide variety of
ways. We can use accumulators for adding, subtracting, performing bit-wise Boolean logic
operations such as ANDing, ORing, Exclusive ORing, complementing, counting up, counting
down, shifting bits left or right with a variety of options, etc.

An index register is a more limited register that can primarily be used for counting up or
counting down, and is called an “index” register because it can be used to locate addresses
in memory as referenced to a specific starting location.

The A and B accumulators are the work-horses of our microprocessor. This
microprocessor has a slight “personality disorder”: it's not sure if it's 8-bit or 16-bit, so
there are commands that work on 8-bit data (bytes) and commands that work on 16-bit
data (words). To accommodate this, the eight-bit A and B accumulators can be combined
into the 16-bit (i.e. “double”) D accumulator. Please do not think of the D accumulator as
being separate from the A and B accumulators! Anything you do to the D accumulator
affects the A and B accumulators, and anything you do to the A or B accumulators affects
the D accumulator. This is a limitation, but it also allows for creative manipulation of the
parts of the D accumulator, a feature you can definitely use to your advantage.

The X and Y registers are 16-bit index registers. We'll frequently use them to point to
locations in memory. They must be loaded with 16-bit data or addresses. You will be
tempted to load them with 8-bit data, but the results will be highly unsatisfactory — you will
get 16 bits, but the other 8 bits will come from a location adjacent to the one you are
interested in, and will end up in the lower half of the register, which is probably where you
wanted your data to be. In the S12XCPU microprocessor core, the X and Y index registers
are capable of a number of operations that were not available in earlier versions, making
them much more versatile.

During the running of a program, the Program Counter Register is constantly updated to
keep the microprocessor moving through the program. Branches and jumps change the
contents of the program counter so that it carries on from a newly-determined location.

The Stack Point Register is used something like an electronic “scratch pad” by the
microprocessor. During operation, the microprocessor may temporarily store things like the
contents of the various registers in a special location called the Stack. Each newly stored
item is placed on the stack in the next available location (actually, the address just below
the last one used, since the stack is designed to grow backwards from an endpoint), and the
stack point register is adjusted to point to this new location. This is really useful when it
comes to calling subroutines or responding to interrupt routines, as the microprocessor can
quickly put the current conditions onto the stack, go off to perform a new function, then, by

NCP1503 Topic 1 Page 17




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

“unstacking” in reverse order, can return to exactly the conditions that existed previously
and continue on as if nothing had happened. We can, and will, deliberately place things on
the stack - just remember to take them back off the stack, and in reverse order, or you will
quickly fill up the stack to a point where it interferes with memory you're using for other
operations. This is called “stack overflow”, and usually results in very bizarre activity or a
total crash.

The Condition Code Register, or CCR, continuously reports back on events that occur
while the microprocessor is executing code. There are eight bits (flags) in the lower byte of
the CCR (CCRL), which is the part we're interested in:

e S, X,and ]I - these are bits we can deliberately manipulate to control the operation
of the microprocessor. S allows the microprocessor to ignore or respond to “stop”
commands in the program, X allows it to ignore or respond to certain interrupt
requests, and I allows it to ignore or respond to a different set of interrupt requests.
Interrupts will be discussed much later.

e CandV - the Carry and Overflow bits provide us with information in the event that
some operation has produced a result that’s too big for the accumulator we're
working with. For example, if we end up with a result that’s one bit too big (like
trying to display $13B in an eight-bit register), the Carry flag will be set and the
register will contain just the part that fits in the register ($3B in the previous
example). The Overflow bit indicates that a mathematical process involving signed
numbers has produced a result where the sign bit is probably incorrect. For
example, 100 + 100 should be +200, but in binary this is 01100100 + 01100100 =
11001000, which is =56. The Overflow bit would be set in this case.

e H - this is the Half-Carry flag. This flag is set whenever an operation results in a
carry out of the Lower nibble of the manipulated register (in other words, when the
result is greater than $F). This is, believe it or not, quite a useful feature,
particularly when it comes to doing math with Binary Coded Decimal (BCD) values.

e Z - the Zero flag is set when the result of an operation is 0.

e N - the Negative flag is set when the most significant bit in a register is 1, since, in
2’'s complement notation, negative numbers always start with 1. This flag will be set
even if you aren’t intending a value to be interpreted as a 2's complement negative.

We can, and will, deliberately manipulate bits in the CCR, but usually we use these flags as
set by the microprocessor to help us make decisions during the flow of the program. For
example, let’s consider the "DBNE” command. This command means “Decrement, and
Branch if Not Equal to zero”. If, during execution of the decrementing stage, the particular
register results in a non-zero value, the Z flag will be cleared LOW, and the program
counter will be loaded with the address of a new location in the program, to which the
operation will now “branch”; if the result is zero, the Z flag will be set HIGH and the
program will continue to the next address in sequence. (This is the machine language
equivalent of an “IF” statement.) Unfortunately, we can’t observe the action of the Z flag
for the DBNE or others of the special compound commands, as the micro restores the
original flags before it completes these types of instructions. However, you can observe the
flags when using commands such as BCS, BEQ, BNE, BLE, BMI, etc.

NCP1503 Topic 1 Page 18




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

In Appendix A of the Reference Manual and other supporting documents, you will find that
each operation uniquely controls the bits in the CCR, and we will need to pay attention to
the results. Here’s an example:

i Access Detail
Source Form Operation Addr. Mgchlne SXHI|NZVC
Mode Coding (hex) HCS12X HCS12
HBA (A)+(B)=A INH |18 06 0o 00| ——A- [AAAA
Add Accumulators A and B

Adding Accumulators B and A could change one or more of the five flags: H, N, Z, V and C.

Memory
We also need to know the memory arrangement in the MC9S12XDP512 Microcontroller.

e The available memory on the microcontroller is somewhat limited. The
9S12XDP512, for example, only contains 32 kB of RAM - your PC at home could
easily have more than 250 000 times as much RAM.

e The address space on the microcontroller is much smaller. “Address space” is the
range of memory locations that a processor can access. The 9512X has a 16-bit
address bus, so it is only capable of accessing 216 (65 536) memory locations
directly. This is quite small when compared to a PC that has a 32-bit address bus
capable of accessing 232 (4 294 967 296) locations. The MC9S12XDP512 has more
memory than can be accessed using the 16 bit address bus, but the extra memory is
only accessible using “paging”, in which an 8-bit register selects which piece, or
page, of memory will be accessed using the address bus.

Consequently, there is only 12 kB of the available 32 kB of RAM directly accessible,
and only 48 kB of the available 512 kB of Flash directly accessible. If you are
interested, later on in the course or for your capstone project, the "MC9S12XDP512
Data Sheet” provides information for accessing the other pages of memory.

e There is no operating system nor are there hardware abstraction layers on the
microcontroller — your code is the only code running on the device.

e The code you write for an embedded system is intended for a specific end-product
device, with fixed hardware. This means the code may be created around many
assumptions, including the assumption that ports not connected to any hardware and
internal modules don’t need to be addressed or dealt with in any way.

The huge document called the “Data Sheet” for the MC9S12XDP512 device contains
memory maps for the device. The following link is in Moodle, as well:
http://cache.freescale.com/files/microcontrollers/doc/data sheet/MC9S12XDP512RMV2.pdf

The “Global Memory Map” shown on the following page shows the entire memory space in
this microcontroller, much of which is only accessible using paging, as previously described.
There is an "EEPROM window”, a "4K RAM window”, and a “"16K FLASH window”. These
windows are the access points for the memory selected using the paging registers. Notice
that the addresses in the “Global Memory Map” are six nibbles long - the first two nibbles
come from the paging registers, and the other four nibbles are from the 16-bit address bus.

NCP1503 Topic 1 Page 19



http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12XDP512RMV2.pdf

| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems |

Chapter 1 Device Overview MC9812XD-Family

CPU and BEDM Global Memory Map
Local Memory Map
0x00_0000
SRR
]
w
4 &}
QRREKEY
AN
Feteteleteleletetetete?
RAM_LOW, -
1%
N
@
Ox0000 1 ok REGISTERS | g
0x0800" {4 EEPROM window E EPAGE g OXOF_FFFF

T W W W W . Y Y
Ox[lcm \\\\\\\\\\\

o IKEEPROM | N
0x1000 RPAGE 1 ?
0x2000 4

1%
EEPROM_LOW =
| =
0x4000 - EEPROM o]
L 0x13_FFFF \ NNNNNNNN o
Unpaged - o
16K FLASH 8
0x1F_FFFF External
0x8000 Space
16K FLASH window PPAGE OX3F_FFFF
0xC000
Unimplemented §
Unpaged FLASH
n
1 BIJ)I?LASH
r
OXEFEE [ FLASH_LOW 4
L
N
2
FLASH P
3
[T
& 0x7F_FFFF ¥
Figure 1-3. 512X CPU & BDM Global Address Mapping
MC9512XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor 39

NCP1503 Topic 1 Page 20




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Unless you have good reason to do so, you're probably wise to avoid the windowed areas of
memory and work with the unpaged regions in the “Local Memory Map”, which can be
accessed without any extra page manipulation using the 16-bit address bus.

Memory Map
The “Local Memory Map”, then, is what we will concentrate on, and contains the following
regions of interest (this list doesn’t include the paging windows):

e Chip Registers from $0000 to $07FF (2K)

e RAM from $2000 to $3FFF (8K)

e FLASH from $4000 to $7FFF (16K)

e FLASH from $C000 to $FEFF (16K minus 256 bytes)
e Vectors from $FFO0 to $FFFF (256 bytes)

When you write your assembly language programs using the supplied skeleton file, you will
put your code in the fixed FLASH block at $4000, and will place working variables in RAM
($2000). You will likely put constant data in FLASH at $C000. The top of the RAM block will
be used for stack space (more on that later). This implies that our programs will typically
contain less than 16K of code, and less than 8K of combined variable and stack space. For
us, this really isn’t a limitation at all.

NCP1503 Topic 1 Page 21




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Topic 2 -Microcontroller Programming

Required supporting materials
e This Module and any supplementary material provided by the instructor

e Device documentation provided in the appendix of this CoursePack
e CNT MC9S12XDP512 Development Kit and 12 VDC Power Adapter
e USBDM Pod or BDM Pod and “A to B” USB Cable
e CodeWarrior

Rationale

Well-structured and documented code results in dependable and maintainable systems.

Expected Outcomes

The following course outcome will be addressed by this module:
Outcome #1: Develop and debug assembly language programs using an Integrated
Development Environment (IDE).

Outcome #2: Create assembly language programs that manipulate data using operations
and expressions.

Outcome #3: Interface with onboard, simple GPIO, and programmable devices.

As this course progresses, you will refine the basic skills and understanding of embedded
systems through programming the 9S512X using S12XCPU Assembly Language and ANSI C.

Connection Activity

You have now learned enough about the 9S12X and its Assembly Language to create simple
I/0 tasks. More complex tasks may require careful pre-planning, more instructions, a
clearer understanding of the ways in which address locations are accessed, and a better
understanding of the ways in which program flow can be controlled. The more complex the
software, the more careful you will need to be in structuring and documenting it. You will
discover that certain tasks are used repetitively or have the potential to be used in different
software routines - these should be stored in such a way that they can be accessed without
needing to copy or re-enter the code. A well-structured program should be easily
understood, easily operated, and easily maintained.

NCP1503 Topic 2 Page 22




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Assembly Language Fundamentals

When programming in S12XCPU Assembly Language there are two fundamental types of
commands: Assembler Directives and Instructions.

Assembler Directives

Assembler directives are commands that control the development software on our
computer, called the Assembler. Assembler Directives do not end up in the code that the
microprocessor runs. Some of the more common Assembler Directives are:

e INCLUDE —tells the assembler to add the contents of an external file

e EQU —-assigns a label to a particular address

e ORG —tells the assembler to move to an address location before continuing
e DS.Bnn —-defines storage space for nn Bytes (8 bits), and should be in RAM

e DS.Wnn —-defines storage space for nn Words (16 bits)

e DS.Lnn —-defines storage space for nn Longs (32 bits)

e DC.B val(s) —-defines a constant Byte or Bytes (8 bits) and should be in ROM

e DC.W val(s) —-defines a constant Word or Words (16 bits)

e DC.Lval(s) —-defines a constant Long or Longs (32 bits)

There are a lot of other Assembler Directives, which can be found in the “"S12(X) Assembler
Manual” from Freescale. Here’s the link:

http://cache.freescale.com/files/soft dev tools/doc/ref manual/CW Assembler HC12 RM.pdf

There’s also a link to this 400 page document in Moodle. It should also be available in the
lab in case you need it.

One useful feature of the S12(X) Assembler is its ability to do math on the fly. You can get
it to calculate addresses or offsets while it is creating the machine code for the CPU, which
can make your life a bit easier.

Instructions

Instructions, unlike assembler directives, are translated into machine language for the
microprocessor to carry out.

A summary of the S12XCPU Assembly Language Instruction Set can be found in Appendix A
of the Reference Manual, the link to which you’ve been given already. Let’s look at what we
can learn about a particular instruction from this guide.

To understand the instruction set, we need to look at the explanatory notes that precede it,
on pages 2 - 5 of the Guide. You’ll get to do that in the exercise that follows.

You also need to know a bit more about the terminology used in Assembly Language
programming.

Op Code - Short for Operation Code, this refers to something the microprocessor will
interpret as an instruction. Each version of each instruction will have a unique op code,
which determines what else the microprocessor needs to look at in order to carry out the
instruction.

Post Byte — Some op codes tell the microprocessor to read the next byte to get details on
the operation to be carried out. In the Instruction Set, this will be indicated in the “Machine
Coding” column as “eb”, “Ib”, or *xb”, depending on the type of post byte.

NCP1503 Topic 2 Page 23



http://cache.freescale.com/files/soft_dev_tools/doc/ref_manual/CW_Assembler_HC12_RM.pdf

CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Mnemonic - the Assembly Language Mnemonic is the pseudo-English abbreviation that
represents a particular op code or set of related op codes and their post-bytes.
Programming in Assembly Language involves getting to know the Mnemonics and figuring
out what each of the variants for that instruction does and what it needs.

Operand - Some, but not all, instructions require something to work on. This could be
actual data, it could be an address containing the necessary data, or it could be an offset
from some other point of reference.

Here’s an example from the Reference Guide: LDAA. Some pertinent points follow.

Source Form Operation agﬂ; Coﬂ?:glfr;zx} HCS:\:;:ess Det:::lzsn SXHI|NZVC
LDAA oprai (M) = A IMM |26 ii P Bl ———— | AAD-
LDAA opria Load Accumulator A DIR |96 aa ref ref
LDAA opri6a EXT |B6 hh 11 YEO YPO
LDAA opre0_xysp IDX  |a6 xb ref ref
LDAA oprxd,xysp IDX1 |a6 xb £f YEO YPO
LDAA opred 6,xysp IDX2 |a6 xb ee ff frep frep
LDAA [D.xysp] [D,IDX] |26 xb fIfrpf fIfref
LDAA [oprel6,xysp] [IDX2] (a6 xb ee f£ fIPTrPf fIPref

e There are eight different ways that "LDAA” can be interpreted by the Assembler. You
can think of these as “overloads” in .net terminology.

e The first and simplest of these uses the "IMM” addressing mode. This means that
the accumulator will be loaded with the contents of the address directly following the
instruction. From the first column, you will notice that this requires a “#” sign in
front of the next byte. Since A is an 8-bit register, it can only load 8-bit data.

e The source form “#opr8i” tells you that the instruction is made of a single-byte op-
code followed by an 8-bit immediate value for an operand.

e 86 ii” shows that the actual op code is $86, and “ii” means two nibbles (a byte)
immediately following the op code.

e The “"EXT” mode is used to access the 8-bit value contained at a particular 16-bit
address. “oprl6a” means that this version of the command has a single-byte op-
code followed by a 16-bit address. “B6 hh II” tells you that this version of the
command has the op-code $B6, and that the address will be two high nibbles
followed by two low nibbles. This, by the way, indicates that this is a Motorola-type
device, and uses “big-endian” address formats as opposed to Intel-type devices,
which use “little-endian” addresses, read low-byte first followed by the high-byte.

e The “Access Detail” column tells you how many bus clock cycles this command takes,
one cycle per letter code, and what happens for each clock cycle (something we
usually don’t need to know much about). Remember that the bus clock is half of the
crystal frequency. Since the crystal on our board is 16 MHz, the bus clock is 8 MHz,
with a period of 125 ns. So, the “"IDX2"” version of this command would take four
clock cycles (“frPP”) at 125 ns per cycle for a total of 500 ns.

e The last two columns tell us what to expect in the Condition Code Register. In this
case, we should expect to see changes for the “negative” and “zero” flags, and the
“overflow” flag will always be cleared to zero.

The following should be a review of work done in a previous course, but is included here as
a reminder as to how to get started in CodeWarrior.

1. Start a project in CodeWarrior. (Typical settings shown in italics: Select the right
microcontroller - MC9S12XDP512; select the right connection pod — TBDML; select
the right core configuration - Single Core; select the right language - Absolute
assembly; enter an appropriate project name and location — Desktop->9S512X-
>Projects.)

2. Skeleton.txt is a file that should be available in Moodle. Open and copy its contents
(Ctrl A — Ctrl C); replace the text in main.asm with these contents (Ctrl A — Ctrl V).

NCP1503 Topic 2 Page 24 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

3. Change the information in the file header to reflect who you are and the nature of
the project.
4. Enter your code in ROM, which will be where the skeleton file says “Main:".

Here’s a bit of code you can put into a project to practice with some of the concepts covered
to this point. You might want to determine how long “kill some time” takes, based on what
you now know about the timing of clock cycles and the size of the Y register. (You should

come up with about a 25 ms delay.)

CLE
BSET

Loop: BSET

LD¥
DENRE

BCLE

LDY
DENE

ERA

FT14D1
DDR1ADL, 11100000

FT1AD1 . x10000000

#0
V.*

FT1AD1,%10000000

#0
¥,

Loop

;initialize —— 1ED= will be off
;make LED indicator pins outputs

cturn on red LED

;kill some time

cturn off red 1LED

;kill some more tines

;go again

Here’s some code that performs exactly the same function as the code above. See if you
can explain why.
CLE PT14D1 ;initialize — LEDs will be off
HOVE #:11100000,D0FE1AD1  malke LED indicator pins outputs, switches inputs
Loop: LDAA FT14AD1
EQRA #x10000000 ;toggle red LED
STaA PT14D1
LDY #0
DENE T, * Jkill =ome time
BRA Loop ;g0 again
NCP1503 Topic 2 Page 25




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

Rudimentary Debugging Skills

In the Debug window, across the top tool bar, you will find the following set of buttons. You
can mouse-click these or use the associated hot-keys, shown in the following table.

Button Function Hot Key
-+ Run F5
2 Single Step F11
— .
r Step Over (run subroutine) | F10
o Step Out (exit subroutine) | Shift+F11
< Assembly Step Ctrl+F11
-1 Halt F6
=+ Reset Ctrl+R
[8] source [= @& | [A] Assembly [==]=]
HC12  |ChJsersvrosst\Deskioph9512\Projects\LE D sAndS witches\bin\main.dbg Line: 16311 HC12  |Entry
ORG  ROMStart i =
4003 RNDCC #2338
4005 CLR 0x0279
Entry: 4008 MOVB #224,0x027B
Startup: 400D LDAR 0x0279
LDS FRAMEnd+1 ;initialize the atack pointe: 4010 ECRR #1288
4012 STAR 0x0273
CLI ;enagble interrupts 4015 LDY  #0
4018 DBNE ¥, *+0 rabs = 0x4018
CLR £0279 ;initialize -- LEDs will be off 401B BRA  *-14 ;abs = 0x400D -
BSET DDR1AD1, $11100000 smake LED indicator pina cutputs
g Ei;.’a #0 rinitialize timer loop Ragister |?”EH§|
:Loop: STan PT1AD1 ;3end current value toc LEDs HC12 ALt
- DENE  Y.* he D 0 2 0 B 0
« [3
IX 0 IY 1]
— = 1P| 4000 ©BC [4000 PPAGE |[FE
[E] Date [=l[=]=] —
SP 0 IFL 0 CCR | SXHINZVC
HC2 main. dbg Auto | Symb | Gilobal EPAGE [FE GPAGE [ 0 DIRECT [ 0 REAGE [FD
Counter 191 int
FiboRes -512 int
VARO0001 16384 int
] Procedure =EE
HC12
Entry ()
<000&"L>
E= Command [=ll=]==]
o
!// After reset the commands written below will be executed — =
done .\cmd\TBDML reset.cmd ] Memary [==]f=]
Auto Logical
Reset command file correctly executed. "
RESET 000020'L OF OF 00 20 05 00 00 00 ... ....
STARTED 00002E'L &0 00 00 00 00 00 FF FF
RUNNING 000030'L 00 00 00 00 00 00 00 00
000098'L 00 00 00 00 00 00 00 00 ........
ins il 0000R0'L 00 00 00 00 00 00 00 00 .eeuaees
— 0000RAS'L 00 00 00 00 00 00 00 00 .eeuaees
K L 0000BO'L 00 00 00 80 00 00 00 00 weeen... e

e In the Debug environment, the “Source” and “Assembly” windows show you the code
as typed by you and as interpreted by the Assembler.

e The "Data” window shows you the contents of variables and constants used in the
program. These are updated whenever the program is halted or reaches a

breakpoint.

e The “"Memory” window shows the contents of any memory location, and highlights

recent changes in red.

e The “Register” window shows the contents of all of the microprocessor’s registers. A
very good troubleshooting technique is to check the contents of the registers against
what you think you're loading into them. This will help you determine if you’ve made

NCP1503

Topic 2

Page 26




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

an error in loading something using Immediate addressing mode (#) or Extended
addressing mode (contents of a memory location indicated by the address).

e In the “Source” window, you can right-click on a given line and set a breakpoint as a
temporary stopping point in the program, allowing you to examine the contents of
the registers, data, and memory.

e While the microprocessor’s activity is halted, you can manually change the contents
of the registers and memory, which will allow you to do “what if” scenarios or cut
down the number of cycles in a long loop by changing the value of a register that’s
being used as a counter.

Once you compile and download code to your microcontroller, it will continue to run that
code on start-up until you over-write it. You’ve burned your program into EEPROM on
board, and, until you reprogram it, it will continue to run the same instructions faithfully.

NCP1503 Topic 2 Page 27




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Documentation and Comments

In a previous course, you used a “skeleton” file each time you started a new project. The
following is a skeleton file modified from one used by Marc Anderson at NAIT. This is a
good starting point — change the text and tabs, etc. to match your comfort zone, and save
this as a simple .txt file for future use. It may also be provided by your instructor.

HC12 Program: ¥YourProg — MiniEzplanation
Processor: MC3512XDPEL2

Xtal Speed: 16 MH=

Author: P Ro== Tavlor

Date: LatestRevisionDate

Details: A more detailed ezplanation of the program is entered here

(kK kKK K R K K

cexport symbols
LEF Entry cexport 'Entry' symbol
ABSENTRY Entry ;for absolute assembly: app sntrvy point

Jinclude derivative specific mnacros
INCLUDE ‘derivative.inc’

:* Equates
:* Variables
ORG REAMStart JAhddress $2000
:* Code Section
ORG ROM_40005tart cAaddress £4000 (FLASH)
Entry:
oS FRAHEnd+1 initialize the stack pointer
Main:
:* Subroutines
:* Interrupt Service REoutines
:* Constants
CRG ROM_CO00S5tart ;=econd block of ROH
E* Look-TUp Tables
e 5CI ¥T100 Strings
E* Abzolute Library Includes

JINCLUDE "¥our Lib.inc”

:* Interrupt Vectors
ORG SFFFE
DC.W Entry :Reset Vector

NCP1503 Topic 2 Page 28




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Using the Skeleton.txt File

1. Start a project in CodeWarrior following steps you’ve previously used. (Typical
settings shown in italics: Select the right microcontroller - MC9S12XDP512; select
the right connection pod - TBDML; select the right core configuration - Single Core;
select the right language - Absolute assembly; enter an appropriate project name
and location - Desktop->9S12X->Projects.)

2. Open and copy the contents of Skeleton.txt (Ctrl A — Ctrl C); replace the text in
main.asm with the copied contents (Ctrl A - Ctrl V).

3. Change the information in the file header to reflect who you are and the nature of
the project.

4. To include a library, first right-click the “Includes” in the Browser and locate the file
(should be in Desktop—>9S12X->Libraries), then in main.asm insert an INCLUDE
Assembler directive following the commented template shown.

5. Enter your code in ROM, which will be where the skeleton file says “Main:".

6. Declare any variables in RAM where the skeleton file indicates “Variables” using a
“DS.x nn” Assembler directive.

7. Define any constants in ROM where the skeleton file indicates “Constants” or “Look-
up Tables” or "SCI VT100 Strings” using "DC.x” and the actual constant data.

8. Put any locally-defined subroutines after the end of your main code loop, which will
automatically happen if you use the skeleton area labelled “Subroutines”.

When you write a subroutine, you should write a header that tells a programmer how to use
the routine and what to expect of it. The following is an example.

e R AR A A A A A A A A A A A A AR A AR A AR A A A A KA A KA A I A AR AR I AR I AR I AR I AR A AR A A d A A h A hhk

* HexToBCD
*

; *Regs affected: D (A and B)
.k

e Ne o N

*
*
*
; *
;*A hexadecimal value arrives in Accumulator D and is converted *
*
*
*
*
*

;*to a 16-bit BCD, returned in D

. %
’

; *Maximum hexadecimal value allowed is $270F

. %
’

,-**********************k*k*k*k*k*k*k*****'k'k'k***~k~k************************

From this, the programmer knows that the D Accumulator must be loaded with the
appropriate hexadecimal 16-bit word, and that, after a "JSR HexToBCD"” the D Accumulator
will contain the 16-bit BCD equivalent. You should also know, as a programmer, that since
the contents of D are modified, the A and B registers will be modified by this subroutine.

You will be writing some subroutines that are specific to the task at hand - these will go in
the “"main.asm” file you’re working on, usually close to the end of the code. You will also be
writing subroutines that can be used in multiple projects. These you will collect into
“libraries” of subroutines, which you will link to the main file using assembler directives.
When you write a subroutine, then, you should determine whether it could be used by other
programs and should be in a library or if it is unlikely to be used elsewhere and should
therefore just be locally-accessible.

As you write code, get in the habit of writing comments as you go. Make your comments
informative, not just a rewording of the Assembly instructions. In the following example,
the first line is not informative; the second one is.

Bad: LDAA #SEO ;load accumulator A with hex EO

Good: LDAA #%11100000 ;ready to initialize Port AD Data Direction Register

NCP1503 Topic 2 Page 29




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Don't type pages of code and then try to go back and insert comments. The comments are
there to help you keep track of what you’re doing as you are coding just as much as to help
win your instructor’s favour!

Of course, if your Main code is set up as a carefully-planned sequence of calls to well-named
subroutines (more on that later), comments would be redundant.

Start: JSR SwLED Init

Flash: JSR Red On
JSR lmsDelay
JSR GrnLEDOnN
JSR ImsDelay
JSR All Off
JSR ImsDelay
BRA Flash

This kind of code wouldn’t need comments, as it is self-commenting.

As your programs become more involved, you will need to do some pre-planning, as you
would with any programming task in any language.

Some programmers are comfortable with writing pseudo-code as a guide to eventually
developing proper code. Others prefer using flow-charts. Either way, a properly planned
program will have cleaner code, will be more likely to run without errors, will be easier to
troubleshoot, and will be easier to modify if the specifications change.

The following page points out some of the pitfalls of programming without proper planning.

NCP1503 Topic 2 Page 30




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

Flowcharting

START

Open book
Set up kit

Read Lab

Want to succeed?

Write/edit code
but don't waste
time on comments

'

Run without
debugqging

Collect
Old Age
Security

Try to remember
what you did
to add comments

;

Understand?

;

._______,_.—-—ll
Flowchart
3
Writeledit ]
code segment

with comments

'

Run/debug

Last process
complete?

Initialization
block

Connection
point

Data
InputiOutput
block

Decision

Subroutine
defined
elsewhere

Internal
Process
Block

Flowchart
subroutine

Identify
individual
tasks

)

Plan tasks
and organize

Draw
Flowchart

Return

Submit
forgrading

NCP1503

Page 31




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The flowcharting sequence and the clearly-recognizable blocks shown on the previous page
provide a good way for you to organize your thoughts and your code.

When you attack a programming problem, one of the first things you should do is identify
discrete tasks that need to be completed. Now, look over your list of tasks: are there any
that could be made into general subroutines for other kinds of projects? If so, these should
be written as generically as possible, for inclusion in libraries.

Consider writing your program so that the Main program is, for the most part, a sequence of
calls to subroutines. Draw your flowchart to reflect this flow of events. You can put all the
“special” subroutines (i.e. the ones not in libraries) below the Main code (well-marked and
documented, of course).

Don’t put “code snippets” into your flowchart - this should be understandable to someone
who is knowledgeable about programming but doesn’t necessarily know the language you're
using. Instead, put descriptive terms or phrases in the program. For example, don't say
“Carry Flag Set?” Instead, say what that carry flag means in terms of the program. It may
mean “Data Ready?” or “"Counter Max'd out?”, or whatever your program is looking for.

Subroutines

Often when programming a microcontroller, you encounter pieces of code that are used in
multiple places. Rather than doing the “cut’'n’paste” routine, which results in very long and
unreadable code, you can write subroutines (think "methods” in C#) which can be called
from the Main program anytime you wish.

In fact, well-structured code should have a very simple Main program that calls well-named
subroutines to do all the work. We'll get into proper code structuring later, after spending
time writing useful subroutines. The following general pointers should help you immensely.

e A subroutine needs a unique label — use something informative, like "CheckLeftSw:".
In this context, labels are followed by a colon.

e You must enter a subroutine using a JSR (ok, you could also use BSR, but it's not
designed to jump more than 256 addresses from where you are, and takes no more
effort or time than a JSR, so why would you bother?).

¢ You must exit a subroutine using RTS.

Important Note!!! You must not use any of the “branch on decision” instructions to
enter or exit a subroutine. When you JSR into a subroutine, the microprocessor
places the return address onto the stack. When you RTS from a subroutine, the
microprocessor grabs the return address off of the stack and goes back to where it
came from. If you don’t have an RTS to match every JSR, you will mess up the
stack. You will either add more and more stuff to the stack resulting in a stack
overflow, or you will take too much stuff off the stack, straying into unknown
territory in memory. Either way, your program will crash in microseconds.

If you use an accumulator or register within the subroutine, PSH it onto the stack
before you use it, then PUL it back off the stack when you’re done with it so that it’s
back to the condition it was in before you entered the subroutine. (That is, unless
you want to use that register to return a value from the subroutine.)

Bottom line: make sure that you always unstack exactly the same number of items
as you have stacked, and in reverse order.

e If you have subroutines within the file called Main, put them all below the actual
Main program in a section clearly labelled “Subroutines”.

NCP1503 Topic 2 Page 32




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

e Make sure you have a descriptive header that explains what the subroutine does and
what registers, if any, are modified by the subroutine. This way, when you decide to
use the subroutine somewhere else, you’ll know what it expects and what it returns.

e Where possible, try to make your subroutines, particularly ones used in libraries,
broadly useful. Typically you wouldn’t put commands into a subroutine that make it
so it can only be used in one place in one program, unless it helps clarify the general
operation of the program.

e If you need to change a subroutine, particularly one in a library, make sure the
changes are backwards compatible so that previous programs that use these
subroutines will still operate. If there is no way of keeping a subroutine backwards
compatible, create a new subroutine with a different name for use in subsequent
programs.

e In the context we've chosen for development (Absolute Assembly), you only have
access to global variables. Where possible, try to make your subroutines work
without using variables so that they are more portable. If you must use a variable or
constant, make sure you put a note in the header reminding yourself or someone
else using your subroutine that the variable or constant needs to be declared in the
Main program.

Libraries of Subroutines

As previously mentioned, some subroutines should be made available so they can be used
by other programs. These library files are simply text files containing the subroutines you
want to include in them. The Assembler/Linker is designed to include any libraries you want
to attach to your main code when you Run/Debug your program. Please note that
everything in the library gets added into your assembled code, so you might want to plan
your libraries so as to keep the amount of unused code in your assembled code to a
reasonable amount.

As previously mentioned, you need to do the following two things to include a library file:

e Add the library to the “includes” folder in the Project window (right-click the folder
and add the file when prompted).

e Put an "INCLUDE"” Assembler directive after your code, so that the included
subroutines will appear at the end of your code in ROM.

If you use the Skeleton file mentioned earlier, it has a pre-defined block for these INCLUDE
statements.

One way to create a library is within the context of a Main program. Write all your
subroutines below the Main program, as usual. After you have tested each of them and are
convinced they do what you want them to do, move the subroutines into a separate text file
and create an informative comment block at the top - it should list each of the subroutines
contained in the library - and save the result as a “.inc” file. It's that easy!

Alternatively, you can start a new “.inc” file, and build it up alongside a “"main.asm” file that
checks each routine as you build it. You’ll need to make the appropriate “includes” to make
this work. This author recommends this method, because it reduces the number of
surprises you might experience.

The more difficult part is deciding what you want to have in a library. You should collect
together subroutines that are related, and are therefore likely to be used for a particular
type of program. For example, you will be doing a lot of work with the Serial
Communication Interface (SCI). It would make sense to have routines that send and

NCP1503 Topic 2 Page 33




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

receive characters through the SCI in the same library. It doesn't make sense to have
routines that turn on the LEDs in that library.

Assembly language libraries suited to the content of this course would include the following:

SwLED Lib.inc
Misc Lib.inc
SevSeg Lib.inc
LCD Lib.inc
SCIO Lib.inc
PWM Lib.inc
ATDO Lib.inc
IICO Lib.inc

The focus of this course will shift to ANSI C programming before all of the material in this
list of libraries has been covered, so you will likely not be required to create all of these
libraries yourself. However, your instructor may provide you with these and other libraries
as seems appropriate.

Misc_Lib.inc will contain routines that could be used in a number of types of programs -
things like HexToAsc, HexToBCD, etc.

If you haven't already done so, you should develop a useful file structure for your work, like
the following:

m Desktop
9512¥
Libraries
Projects
A7j2014
A9j2014

AN A

Create this file structure, and simply copy the entire thing back and forth between the
desktop of the computer you're working on and your file storage device.

You should probably store your skeleton file in the "9512X" directory so you can access it
every time you start a project.

During the creation of a new project, the CodeWarrior IDE will create the folder for that
project and will build all the associated subfolders and files inside the project folder.

NCP1503 Topic 2 Page 34




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

S12XCPU Addressing Modes

Addressing modes define what memory the instruction will operate on. Each instruction
offers one or more addressing modes. The S12XCPU offers some very complex addressing
modes, and we will not look at all of them. Some addressing modes lend themselves well to
compiler output, so as humans, we aren’t suitable candidates for their use.

The assembler selects the addressing mode, where appropriate, from the form of the source
instruction. The text form of the instruction entered into the assembler is ultimately
rendered into machine code - that which the CPU understands. Common omissions or
‘trivial’ mistakes in code entry can lead to incorrect values or incorrect addressing modes in
machine code.

Inherent - INH

The simplest of all addressing modes is inherent (INH). Inherent instructions require no
additional information to operate.

The following code snippet contains a number of Inherent commands. Notice how the
Assembler interprets each - no reference to memory addresses.

|E| Source

E:wwarking datahnaithcnt3414921 24N otesh B azic Timeribinmain.dbg
|E| Assembly
Entry
4000 CF2000 LDS #0x2000
4003 10EF ANDCC #0xEF
T 3005 27 No?
aba 4006 1804 RER
inx 4008 08 INX
mual 4009 12 MUL
tfr x,¥ 400 B7SE TFR X, ¥
AfAnM™ CALCH CTRAN [a BT =]

Immediate - IMM

The immediate addressing mode contains the required operands in the object code,
meaning the required information is constant, user-defined, and part of the instruction.

To indicate the immediate addressing mode, these instructions must use a pound sign on
the operand. This will differentiate the immediate form from the extended form, which we
will look at next.

The following code snippet contains a number of commands in Immediate Addressing mode.
Notice how the Assembler interprets each command, and what it will work on.

IE Source

E:wworking databnaithcnt34149:1 24 otestB asicTimersbintmain. dbg
@ Assembly
Entry
4000 CF2000 LDS #0x2000
4003 10EF RNDCC #0HEF
ldaa #45 + %& 4005 8637 LDAZ #0x37
bBitk #%10 4007 C502 BITE #0x2
ldy #Entry 4009 CD4000 LOY #0x4000
skck #-1 400C C2FF SBCE #0xFF

NCP1503 Topic 2 Page 35




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Extended — EXT

The extended addressing mode requires a 16-bit address. The byte(s) at this address are
used by the instruction. What happens to the byte(s) depends on the instruction.

The assembly language form for extended addressing requires no decoration, just anything
that can be bent into an address:

El Source

E:'working datahnaityont3414921 25 otes B azic Timer\bintmain.dbg
|E| Assemnbly
Entpy
4000 CF2000 LD5 #0x2000
4003 10EF ANDCC #0xEF
ldaa 45 * &= 4005 B&O1C2 LDAR O0x01C2
bitk %1011001100010100 4008 F5B314 BITE 0xB314
ldy Entry 400B FD4000 LDY 0x4000
bkita 1 ; - interesting... 400E 93501 BITA 0x01
AfTn CACH TR [ ETY =, 1

We can use labels to define constants (in ROM) and variables (in RAM), then we can use
various addressing modes, like “EXT”, to access these. Here’s an example.

ORG $2000 ;start of RAM
Counter: DS.B 1 ;one byte assigned as variable Counter
ORG $4000 ;start of FLASH for program
MOVB #$5A,Counter ;place initial value into Counter
Direct — DIR

The direct addressing mode is used to operate on memory locations 0x0000 — Ox0O0FF.
Syntactically this form is identical to extended, except this form requires one less byte of
code, as the high byte of the address is assumed to be $00. This addressing mode is useful
when RAM is available in the first 256 bytes of the memory map, as it provides fast access
for variables. Sadly, for the S12XCPU as configured in the 9512XDP512, there is not a lot
of call for direct addressing, since the “first page” of memory contains the microcontroller’s
internal peripheral module registers. The assembler will automatically detect and
implement direct addressing instead of extended if the instruction supports it.

Relative — REL

The relative addressing mode is used principally in branching instructions. The S12XCPU
supports long and short branching. The operand(s) in a branch instruction form a signed
offset that participates in forming a new address for the program counter - in other words,
the program execution moves to a new point, or branches away. The target address is
found by adding the relative offset in the operand(s) to the address following the first
(maybe only) offset operand. One of the things you should appreciate about the assembler
is its ability to calculate relative offsets for you. You put in labels, it does the math.

Note: Some instructions like BRSET and BRCLR don’t show the addressing mode as REL
because they are performing two commands: a compare and a branch. However, they are
using relative addressing, so you won't be able to use these commands to move more than
-128 or +127 counts of the program counter from where you’re at. This can be a serious
limitation, and will probably catch you off guard: you’ll have a program that's working

NCP1503 Topic 2 Page 36




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

perfectly, then you’ll add in a bit of code between one of these commands and its target.
Suddenly, you'll get an “out of range” error, with no simple way of solving the problem.

The simple branching commands have a “long branch” option. By putting an “L” in front of
the mnemonic, its range becomes -32,768 to +32,767. This isn’t available for the complex
instructions.

In the code snippet below, by comparing the “Source” window to the “Assembly” window,
you can see how the Assembler has interpreted each of these instructions using Relative
addressing. Take some time to get to know what the offsets are and how they are
displayed in the disassembled code, in the comments, and in the machine code. Some of
these are discussed below.

r
El Source

E:Wworking datahnaithcnt341%43:1 25MoteshB asic Timer\binhmain. dbg
@Assembly
Entry
4000 CF2000 LDS #0x2000
4003 10EF ANDCC #0xEF
[ bra 4 4005 20FE ERE _ *+0x0 ;abs = 0x4005
forever: bra forever 4007 20FE BEA *+0x0 ;agba = 0x4007
braet £4000, 41, forever 4009 1E400001F9  BRSET 0x4000,#0x1, *0xFFFFFFFE rabs = 0x4007
backward: brn forward 400E 2100 BEN *+0x2 ;abs = 0x4010
forward: bra backward 4010 20FC BRA *0xFFFFFFFE ;abs = 0x400E
1bra * 4012 1820FFFC LBRE  *+0x0 ;abs = 0x4012
401a SR5A STAR 0Ox52

Look at the “bra *” line. As written, this means we want the code to branch back to the
beginning of the current line. In the disassembled code, this shows up as "BRA *+0x0",
which again means the intent is to branch 0 positions from the beginning of this line. In the
comments for the disassembled code, the absolute address is given as "0x4005”, which, as
you can see, is the beginning address of this particular line of code. The most important
part, though, is to understand the machine code: “20FE”. “20” means a short branch
always. “FE”, though, is -2, and tells the microprocessor to subtract 2 from the current
program counter. Since the program counter will have advanced by 2 while executing this
command to address $4007, it will be moved back to $4005, where it will execute the
command again ad infinitum.

Briefly look at the difference between the “bra *” line and the “Ibra *” line. In this case,
you’ll notice that the relative offset is four nibbles: $FFFC, or -4, to cover the extra bytes
required in this longer version of the command.

Look at the “brset $4000,#1,forever” line. In this command, if the LSB of the value in
address location $4000 is set (the mask “#1” is the same as #%00000001), the program
counter is supposed to go back to “forever”, which is address $4007. (Incidentally, address
$4000 contains $CF as seen in the program listing, so the branching condition will be
TRUE.) Notice what the machine code says: “"1E400001F9”. “1E” is the op code for BRSET.
"4000"” is the address we want to check the contents of. “01” is the mask we’re comparing
against. And now for the offset: “F9” is only 8-bit, so we can only do short branches with
this command. “F9” is -7, which takes the program counter back from $400E where it's
sitting to $4007, the address of “forever”.

NCP1503 Topic 2 Page 37




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Indexed — IDx, IDx1, IDx2, [IDx2], [D,IDx]

The S12XCPU chip has several forms of indexed addressing. The simplest form of indexed
addressing uses X,Y,SP or PC ("x” in the form above) as a pointer. To this pointer (the
value in the register) an offset is added. The offset is either a 5-bit signed offset (IDx),
9-bit signed offset (IDx1), 16-bit signed offset (IDx2), or the contents of accumulators A, B,
or D. The assembler will automatically select the correct form of the instruction, as long as
what you enter can be bashed into a valid instruction:

-
@ Source

E:\warking data‘naithcnt34143:1 24MatezhB asicTimerbinmain. dbg
;bra next
|E| Assembly
Entry
movw #50102,51000 4000 CF2000 LDS #0x2000
movw #50304,51002 4003 10EF ENDCC #0xEF
4005 180301021000 MOVW #0x102,0x1000
ldx #£1000 400B 180303041002 MOVW #0x304,0x1002
4011 CE1000 LDX #0x1000
ldaa 0,x ; 5-bi 4014 R&00 LDRE 0Ox0,X
ldaa £20,x ; 9-bit 40146 RGE020 Loar 0Ox20,X
ldaa £2000,x ; lé-bit 4019 REE22000 LDAR Ox2000,X
ldaz &,x : accumilator offset 4010 RGE4 LDAR A X
401F 5R5R STAR Ox5R

The indexed-indirect addressing mode ( [IDx2] and [D,IDx] )allows either a 16-bit or D
offset from X,Y,SP, or PC. In this mode the address formed from the offset is used as
another address. The action of the instruction is on the target of this address:

-
@ Source
E:\working datahnaithcnt34 14951 25Motes\B azicTimersbinkmain.dbg IE Assembly
Entry
mowve #£0700, 50500 4000 CF2000 LDs #0x2000
movie $5£1234, 50700 4003 10EF LNDCC #0xEF
4005 180307000500 MOVW #0x700,0x0500
1dx #£0500 400B 180312340700 MOVW #0x1234,0x0700
4011 CEQS00 LOX #0x500
1dy [0, x] ; x+0 = £0500, s3c read addr from there 4014 EDE30000 LOY [0x0000,X]
; address read from $0500 is £0700 4015 5454 3TRx  0x5R
; 30 load Y from $0700, ¥ = £1234 4014 5ASR STRR  0=5R
401C SA5A STRR  0=5R

NOTE: You can live a long, happy life not using most of the indexed addressing modes.
However, they're there if you need them.

The indexing modes also offer pre/post increment/decrement options for the indexed
addressing modes. These are typically leveraged by compilers, but you are free to look up
their operation, should you feel ambitious.

You should get to know the direct indexing modes (no square brackets) very well. Here's a
bit of practice.

LDX #Table
LDAA 2,X
BRA *
ORG $C000
Table: DC.B $1E, $B6, $2F, $5A

After this code has run, X = $C000, and A = $2F. Make sure you can explain why before
moving on.

NCP1503 Topic 2 Page 38




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Frequently-Used Instructions
In the Reference Guide, you will find a listing of all the possible instructions (the “Instruction

Set”) for the S12XCPU. You should look through this entire list to see what sorts of things
you can do with this device.

Here are a few of the ones you will probably use extensively. As you go through this list,
remember that references to "memory location” could refer to the byte or word directly
following the Op Code (IMM mode) or a memory location elsewhere, accessed using any of
the other addressing modes.

LDAA, LDAB, and LDx - (where x could be D, X, Y, or S) puts the contents of a memory
location into the selected accumulator or register. Remember that 8-bit registers will load a
single byte and 16-bit registers will load two bytes - always the one you point to and the
one immediately following it — in order to get the full 16 bits.

STAA, STAB, and STx - (where x could be D, X, Y, or S) puts the contents of the selected
accumulator or register into a memory location. Again, remember that 8-bit registers will
store a single byte into the location you're pointing to, and 16-bit registers will store two
bytes - one into the location you're pointing to and one into the one following it. If you
forget this, you're in for a big surprise when you over-write a byte you didn’t think you were
going to affect.

CLR, CLRA, and CLRB - all bits cleared in the selected accumulator or memory location.

DEC, DECA, DECB, DEx - (where x can be S, X, or Y) subtracts one from a memory
location or register.

INC, INCA, INCB, INx - (where x can be S, X, or Y) adds one to a memory location or
register.

BCC and BCS - branch to a specified location, based on the condition of the Carry flag
BEQ and BNE - branch based on the condition of the Zero flag

BGE, BGT, BLE, BPL, BMI, and BLT - branching decisions based on the comparison of
signed numbers.

BHI, BLO, BHS, and BLS - branching decisions based on the comparison of unsigned
numbers.

DBEQ and DBNE - compound instructions that decrement a register or memory location,
then make a decision based on whether or not the result is zero.

ADDx and ADCx - (where x could be A, B, or D) these add the contents of a memory
location to the contents of the selected accumulator. If you use the "ADC” version,
whatever is in the Carry flag of the CCR (0 or 1) will also be added in.

SUBx - (where x could be A, B, or D) subtracts the contents of a memory location from the
contents of the selected accumulator.

MUL - multiplies A by B and dumps the result in D.

There are five different division routines: FDIV, EDIV, EDIVS, IDIV, and IDIVS. These
are somewhat complicated to use, and will be explained when you need them.

ANDA and ANDB - these perform a bit-wise AND between the contents of the specified
accumulator and the contents of a memory location (more later when we discuss masks).

ORAA and ORAB - these commands perform a bit-wise OR between the contents of the
accumulator and the contents of a memory location.

NCP1503 Topic 2 Page 39




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

EORA and EORB - performs a bit-wise Exclusive OR (XOR) between the accumulator and
the contents of a memory location.

COM, COMA, and COMB - performs a 1's complement inversion of each bit.
NEG, NEGA, and NEGB - performs a 2's complement of the target value.

BITA and BITB - (bit test) performs an "AND” operation between the accumulator and the
memory location, but doesn’t affect the contents of either — only the Condition Code register
is affected.

CBA - compares the A and B accumulators by subtracting B from A, and modifies the
Condition Code Register accordingly — used to determine which is greater.

CMPA, CMPB, CPx - (where x can be D, S, X, or Y) compares the selected register to
memory by subtracting the contents of memory from the register, but doesn’t change
anything except the CCR.

LSL and LSLx - (where x could be A, B, or D) performs a logical shift left, bringing in a “"0”
at the lowest bit and spitting the highest bit into the Carry flag of the CCR.

LSR and LSRx - (where x could be A, B, or D) performs a logical shift right, bringing in a
“0" at the highest bit and spitting the lowest bit into the Carry flag.

ROL, ROLA, and ROLB - just like LSL, except that the contents of the Carry flag are
brought in to the lowest bit instead of “0”. Watch this command: it rolls 9 bits, not 8.

ROR, RORA, and RORB - just like LSR, except that the contents of the Carry flag are
brought in to the highest bit. Again, this rolls 9 bits, not 8.

BCLR - clears bits (ensures that bits are “0”) according to which bits are set in a mask.
Other bits remain unchanged. This involves ANDing the bitwise complement of the mask.

BSET - sets bits (ensures that bits are "1”) according to which bits are set in a mask.
Other bits remain unchanged. This involves ORing the mask.

CLC - clears the Carry flag in the CCR.
CLI - clears the Interrupt bit in the CCR, thereby enabling interrupts.

EXG, XGDX, and XGDY - swaps the contents of two registers. Things get messy if you
swap the contents of 8-bit and 16-bit registers!

TFR, TAB, TBA, TAP, TPA, TSX, TXS, TSY, and TYS - moves the contents of one register
into another without changing the first register’s contents. Again, transferring the contents
from an 8-bit register to a 16-bit or vice versa can produce unexpected results!

MOVB and MOVW - moves a byte (8-bit) or a word (16-bit) from one memory location to
another. Frequently used in IMM/EXT mode, (e.g. MOVB #$3E,Table+1) this can also be
used in EXT/EXT mode (e.g. MOVB Counter,Display) or various indexed (IDX) modes. Note:
Don’t confuse the “B” for “byte” in MOVB with Accumulator B!

PSHx and PULx - (where x could be A, B, C (for CCR), D, X, or Y) places an item on the
stack or takes it back off the stack, allowing you to use the stack as temporary storage.

JSR and RTS - jump to a subroutine and return from a subroutine. Be careful with these -
they automatically involve placing the Program Counter (16-bit) on the stack and pulling it

back off. If you follow a JSR with a branching statement instead of an RTS, you will quickly
experience the pain of a stack overflow. Every JSR must have an RTS.

NCP1503 Topic 2 Page 40




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Masks and Bitwise Boolean Logic

Many of the instructions for the S12XCPU involve masks. A mask is an 8-bit or 16-bit
binary pattern used to select individual bits in a register or memory location. In its original
sense, the pattern "masked out” bits that weren’t needed or wanted for a particular
operation, leaving the significant ones “visible”. We now use the term more generally for
any pattern that allows us to operate on individual bits instead of the whole byte or word.

The various bitwise actions are as follows:

SET the selected bits (i.e. make these bits HIGH, or logic 1).

CLEAR the selected bits (i.e. make these bits LOW, or logic 0).

TOGGLE the selected bits (i.e. LOW becomes HIGH, HIGH becomes LOW).
BRANCH if the selected bit or bits is LOW.

BRANCH if the selected bit or bits is HIGH.

It's important to distinguish between instructions or actions that affect an entire register or
memory location and those that act on individual bits.

Commands affecting an entire register or memory location
LDAA/LDAB/LDD/LDX/LDY The register contents are replaced by the incoming data.

e.g. LDAA #%10100011 ;A ends up containing 10100011
STAA/STAB/STD/STX/STY The memory contents are replaced by the outgoing data.
e.g. STAA Counter ;Counter ends up containing the contents of A

MOVB/MOVW The memory contents are replaced by the indicated data.
e.g. MOVB #$F2,Counter ;Counter ends up containing F2.
CLRA/CLRB/CLR Each bit in the register or memory location is cleared to 0.
e.g. CLR  Counter ;Counter ends up containing 00.
COMA/COMB/COM Each bit in the register or memory location is toggled (complemented).
e.g. LDAA #9%01011010
COMA ;A ends up containing 10100101

Commands affecting selected bits
ORAA/ORAB 1s in the mask SET the corresponding register bits; 0s have no effect.

e.g. LDAA #9%01011010
ORAA #%11000000 ;A ends up containing 11011010

ANDA/ANDB O0s in the mask CLEAR the corresponding register bits; 1s have no effect.

e.g. LDAA #9%01011010
ANDA #9%11100111 ;A ends up containing 01000010

BSET 1s in the mask SET the corresponding bits in memory; 0s have no effect.

e.g. MOVB #%01100010,Counter
BSET Counter,%11000000 ;Counter ends up with 11100010

BCLR 1s in the mask CLEAR the corresponding bits in memory; 0s have no effect. This is
essentially the same as ANDing with the complement of the mask.

e.g. MOVB #9%01100010,Counter
BCLR Counter,%11000000 ;Counter ends up with 00100010

NCP1503 Topic 2 Page 41




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Commands responding to selected bits

BRSET 1If, in a memory location, a bit or all of the bits selected by 1s in the mask are HIGH,
program execution will branch to the indicated address. The most straightforward way to
use BRSET is in response to a single bit.

e.g. BRSET PT1AD1,%00010000,UpSw ;Branches if the Up switch is pressed

BRCLR 1If, in a memory location, a bit or all of the bits selected by 1s in the mask are LOW,
program execution will branch to the indicated address. Again, this is easiest to use in
response to the condition of a single bit.

e.g. BRCLR PT1AD1,%00010000,NotUp ;Branches if the Up switch is not pressed

NCP1503 Topic 2 Page 42




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Using Variables and Constants

As you code more complicated tasks, you will find it increasingly difficult to juggle the few
CPU registers you have to work with. The use of RAM-based variables is an easy sell, and
will help you with code management when there are multiple states to manage.

Variables need to be stored in RAM, or they won't be variable. Variables are created within
ORG sections that place the program counter in RAM. The skeleton file you're working with
has a header to show you where you should place your variables, which will be after an
“"ORG" that places the variables in RAM.

Variables are defined with a DS (Define Space) directive. There are three forms of the DS
directive:

e DS.B reserve space for bytes (8-bits)
e DS.W reserve space for words (16-bits)
e DS.L reserve space for longs (32-bits)

The DS.x directive is followed by a count that indicates the number of elements to reserve.
This number must range from 1 to 4096. The count is multiplied by the size of the type to
determine the number of bytes that will be reserved for storage.

. wariablersdata =ection Data
ORG RAMStart L Address: 0x432 Size: 120
; Inzert here your data definition.
bytes: d=.b 10 bytes <10x array[l0] of unsigned char
words: d=.w 20 words <4 array[20] of int
longs: d=.1 30 longs <120 array[30] of long

Reserved space is not initialized, and will typically contain garbage. It is your responsibility
to initialize all reserved space if your code requires it.

You will usually include a label for each DS directive, although it's not required. The label
and reserved space together are loosely referred to as a ‘variable’.

NOTE: You've been told this before, but it doesn’t hurt to say this again: Your library
subroutines may use variables internally, but because of the layout of the projects we are
creating, the variables must be created in the main program file. Use of variables in a
subroutine in a library will require that you clearly document the required variable names
and initial values in the subroutine block.

Constants are not something intended to change as the program runs. Consequently, they
should be in ROM. For ease of debugging, we’ll use the address space starting at $C000.

Constants are defined with a DC (Define Constant) directive. There are three forms of the
DC directive:

e DC.B byte-sized constants (8-bits)
e DC.W word-sized constants (16-bits)
e DC.L long constants (32-bits)

Since the data is constant, it must be defined at the time of assembly. Therefore, the DC
command is followed by the data to be defined.

A typical application would be to store string data, as shown in the following example:
Name: DC.B “P. Ross Taylor”,0

This will create a 15-byte field with an ASCII character in each byte (the last one is NULL),
where the address indicated by "Name” will be the address of the character “P”.

NCP1503 Topic 2 Page 43 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Here are some important things to keep in mind when using variables and constants in your

code.
1.

2.
3

10.

11.

12.

The Assembler interprets your assignment of a constant or variable label as a 16-bit
address, and will replace subsequent references to that label with the 16-bit address.
Storing a single byte into a multi-byte variable changes only the first byte.

Storing a 16-bit value to a single-byte variable will change the contents of that
address and the address following it. If that address is another variable, you will
have over-written its contents (affectionately known as clobbering the next variable).
Storing to a constant in ROM changes nothing - why else would we call it a
“constant”?

Calling something in RAM “constant” is a lie - don‘t do it! You could be fooled when
debugging your program, as the Assembler will populate that location when you
download your code. However, when you turn off the micro board, that information
will be lost forever, and the code won't run properly the next time.

The Assembler lets you enter bytes into a constant or variable using a lot of different
formats. For example:

Str: dc.b $48,’1i’,564,”den”, $20,”Me”,%01110011,115,$60+1,"g’,$67-2

...will contain the ASCII characters “Hidden Message”. See if you can determine how
each of the characters is interpreted from what is given by the Assembler. You may
find some of these techniques useful. For instance:

e Putting an ASCII character in single quotes ('i’) tells the Assembler to treat
this as an ASCII character.
e Putting multiple ASCII characters in double quotes ("den”) tells the Assembler
to put each of the ASCII characters into sequential address locations.
e Characters can be entered in binary, decimal, hexadecimal, or even octal
form.
e The Assembler will even do calculations “on the fly” to arrive at a value to
store in an address location.
The X and Y registers are called “index registers” because you can use them as
pointers to the beginning of a memory space (like a multi-byte constant or variable).
Use a pound sign (#) to load the address of a variable or constant into a 16-bit
register, usually (but not exclusively) an index register (X or Y).
You can find a byte at a particular offset from the address contained in an index
register. This is done using Indexed Addressing Mode, for example

LDX #Str ;X now points to the first address of Str
LDAA 2,X ;A now holds the third char in Str (zero based)

The index registers can point to any memory location (not just the start of a
variable), so you can crawl through a multi-byte variable or constant using INX or
INY.

INX ;following the above code, X points to Str+l

You can't load an address into an 8-bit register. You will only get half of the address,
and certainly not the contents of that address, so trying to work with that will
produce really bizarre results. So don’t try LDAA #Str — it won't work.

If you don't use a pound sign, you will load the contents of the memory location
represented by the variable. If you load an 8-bit register, you will get the single
byte from that memory location (LDAA Str puts ‘H’ into A in our previous example).
If you load a 16-bit register, you will get two bytes: the one you pointed to and the
one following it. (LDD str puts‘H’into A and ‘i’ into B in our previous example).

NCP1503 Topic 2 Page 44 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Programming in C

Every time you've started a new project, you've unchecked “"C” and checked “Absolute
Assembly” instead. You probably don’t even think about it anymore; but what if ....

C is a much older language than the C# you've been working with. However, although
Microsoft has tried to cloak the basics in Orwellian doublethink, you will probably find that
there are some transferable concepts, fundamental operations, and syntax similarities that
will make learning C for the 9S12X fairly easy. Unless your instructor has chosen to
approach the order of this course differently, you should, at this point, have learned the
fundamentals of programming in S12XCPU Assembly Language, which is tightly linked to an
understanding of the operation of the microprocessor and its peripherals. Programming in C
also requires a clear understanding of the operation of the microcontroller, particularly its
registers; however, the C cross-compiler used by Code Warrior is capable of handling many
things itself so you don’t have to worry about all the details.

The following pages show how to start a C project, how to write and run simple code, how
to write and use “Functions” (these are what C# architects decided to refer to as
“Methods”), and how to write, include, and use uncompiled code libraries.

Setting Up an ANSI C Project
Start a new project, following the steps below:

1. Follow the usual steps to start a new project, including selecting the appropriate
derivative of the 9512X, the BDM interface you're using, and “Single Core”.

2. Leave the “"C” box checked, set the appropriate “Location” (your Projects folder), and
give your project a name. Don't hit “Finish”, as there are more screens coming.

3. When you get to the "C/C++ Options” page in the Wizard Map, select “"ANSI startup
code” and the “Small” memory model. If your program doesn’t have to do anything
mathematical, leave floating point format as “"None”. If, however, you want to do
floating point math (i.e. fractional values) instead of just working with integers (not
to be confused with int declarations), you should probably check “float is IEEE32,
double is IEEE32”. (This option will consume a lot more memory when generating
code and will run more slowly, but you probably won't run out of room. Timing
might be more of an issue.) Now you can click “Finish”.

)
HC(S)12(X) Microcontrollers New Project (=]

Wizard Map

Which level of startup code do you want to uss?
Select minimal startup code' for best code density

e Small memory model is best suted .
bath the code and the data do fit into
he 64 kB address space

By default all variables and functions

Device and Connection
¢ minimal stertup code

XGATE Setup = ANSI startup code re accessed with 16 bit addresses
& compiler does support banked

Froject Parameters Which memary model shall be used? unctions or paged variables in this
emory model, however

Add Additional Files * Small ll accesses have to be explicity

" Banked andled.

Processor Expert ) e small memory model should be
sed for all denvatives with less than

C/C++ Options o EE Bk

PC-Lnt Select the floating point format supported.
Select "Mone’ for best code density.

" None

™ float is IEEE32, double is IEEE32

(" float is IEEE32. double is IEEEG4.

<Bock | Ne> | Fmsh | cancel |

4. Open the "main.c” program. It will contain some basic code (a bit less annoying
than the code they inserted in "main.asm”, but still not entirely useful. Instead,
create a “skel_C.txt" file like the one on the following page, replace the text in
“main.c” with it, and tidy up the header information.

| NCP1503 Topic 2 Page 45 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

ANSI C Skeleton File

I
#HC12 Program: YourFrog — MiniEzxplanation

*Processor: MC9512XDPEL2
#¥{tal Speed: 1 MH=z
#Author: This B. You
*[ate: LatestRevisionDate

*
*[D=tails: A more detailed explanation of the program iz entered here
s

#include <hidef h> <« common defines and macros

ssginclude <stdio h:r s BHST © Standard Input-Output functions
sofinclude <math he <« ANSI C Mathematical functions

finclude "derivative . h” s deriwvative—specific definitions

s

* Library includes=s

Ss#include "Your Lib . h"

-

* Frototypes

s
-
* Variables

s
I
* Lockups

s
wold main{wvoid) #¢ mailn entry point

_DISABLE _COF():

* Initializations
-
for (.:) ssendless program loop
{
e
* Hain Program Code

+
o
* Functions

v
o
* Interrupt Service FEoutines

A
o A

There are a number of ways to create an endless loop in ANSI C, including while(1){code}.
However, we've chosen to use the endless for (;;){code} loop as shown in the skeleton file
above because it doesn’t generate any compiler warnings.

Notice that Variables and Lookups appear to be in the same memory space, which would
have to be in RAM. However, in ANSI C, both of these can be initialized or pre-loaded,
which means their values would somehow have to be in ROM. In reality, the C compiler will
store the initialization values in ROM, and will create a working copy in RAM on start-up so
that the values can subsequently be changed under programmatic control. (The same can
be done when programming in S12XCPU Assembly Language, but the process has to be
written into the program, and is therefore much more involved.)

| NCP1503 Topic 2 Page 46 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Switches and LEDs with ANSI C

Since you've already gained some experience working with the push-button switches and
the LEDs connected to PT1AD1 of your microcontroller, this makes a good jumping point
into writing programs in ANSI C.

In order to initialize PT1AD1, you need to set the LED-connected pins to OUTPUTS, set the
Switch-connected pins to INPUTS, and digitally-enable the switch-connected pins. You
probably also want to initialize the conditions of the LEDs to ALL OFF. Here's a bit of ANSI C
code that performs these operations:

DDR1AD1=0b11100000; <<LED= az outputs, Switches a= inputs
ATDIDIEN1=0B00011111; “#Digitallv—enable the Switch inputs
FT14D1&=0b00011111; <Turn off all ILED=z a=z initial condition

Notice that we can overwrite all eight bits in a register using the “=" operator. In the
example above, the values have been entered as binary values, because that makes the
best sense for bitwise operations. However, the first command could have been
“"DDR1AD1=0xEQ"” for hexadecimal or "DDR1AD1=0340" for octal or "DDR1AD1=224" for
decimal - all of these options would have made the LED pins outputs and the Switch pins
inputs. The cross-compiler is smart enough to convert any numeric representation into
binary for the microcontroller, so pick the format that makes the most sense to you as a
human-programmer. There are times when the decimal representation of a number makes
most sense. For example, "NewDozen +=12" probably makes more sense to you than
“NewDozen+=0b00001100", "NewDozen+=0x0C" or “"NewDozen+=014".

If we only want to change some of the bits, we use bitwise operations like “&”, *|”, or”"n"
(AND, OR, or EOR). In the case above, we wanted to turn off the LEDs, so ANDing with 0
performs that function, whereas ANDing with 1 has no effect. If we wanted to turn on or
set particular bits, we would OR the desired bits in the register with 1s, whereas ORing the
other bits with 0 has no effect.

Functions

In ANSI C, a Function (a.k.a. Subroutine or Method in other languages) requires a
“Prototype” or “Declaration”, defined prior to the execution of any code. The prototype
declares the type of what is returned from the function and the types of any parameters
passed to the function. Although you can choose the variable names for parameters passed
to the function in the prototype, this is not necessary. The prototype often looks like the
first line in the actual function, just terminated with a semicolon. The following are some
examples:

void SWLED_Init(void);

char SwCk(void);

void LEDOut(char LEDs);

void LEDOut2(char);

unsigned int TwoNumSum(unsigned char X, unsigned char Y);

The skeleton file provided has a section at the top for you to put your prototypes.

The function itself starts with a header much like the prototype, but with the variable names
that will actually be used in the function, if these were not specified in the prototype. The
“definition” of the function is contained between curly brackets {} (affectionately referred to
as “chicken lips” in NAIT's CNT department).

If a value is to be returned from the function, a “return <value>" statement is required.

| NCP1503 Topic 2 Page 47 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Libraries of Functions

As with your work with S12XCPU Assembly Language, you can create libraries of commonly-
used functions. However, the process is quite different.

To begin with, you will need two files for each library: a header file (.h) and an uncompiled
code library (.c). The header file contains all of the prototypes for the functions, with the
definitions (actual code) appearing in the uncompiled code library.

When you create a new project, you will need to do three things:

e Include the “.c” file in the “"Sources” section of the project browser window.
e Include the “.h” file in the “Includes” section.
e Add an #include “libname.h” line to the “Library includes” section of the skeleton.

The “.c” file itself needs to start with “include” statements. Here’s a screen-shot of the
beginning of this author’s "SwLED_Lib.c” library:

S#5witches and LED=
SsProces=sor:  MCI512EDPL1Z
SoCrw=tal: 16 MH=z

S«by P Fo== Tawvlor

SoMaw 2014

#include <hidef h»
#include "deriwative h"
finclude "SwIED _Lib. k"

Notice the different punctuation: the <hidef.h> reference is to one of the standard ANSI C
compiled libraries, whereas the libraries in quotes are uncompiled libraries. The
“derivative.h” file points to the *"mc9s12xdp512.h" file that contains all the definitions of the
labels for the registers in the version of the 9512 we’re using.

You will be required to write a library to match the contents of the following “"SwLED_Lib.h"
header file:

s« Switches and LED=

SoProcessor: MC9S12XKDPS1Z2

S#Crystal: 16 MH=

s<by P Rozsz Taylor
s June 2015

void SwLED Init({woid); .~ LED= a= output=, Switches as= input=, dig in enabled

char Sw_Ck{void); ~returns debounced condition of all =s=witches in a byte. LED walues = 0

vold LED Oni{char): ~~ accepts R, G. ¥. & (for all)}

volid LED ODffi{char): ~~accepts R, G, ¥. & (for all)}

void LED Togichar); ~~accepts R, G, V. & (for all), and toggles the condition of the LED(=) indicated
In the functions that accept a colour parameter, you will need to pass the value as an ASCII

character, which requires the use of single quotes: e.g. 'R’

To begin with, you won’t need to build the “"Sw_Ck()” function, as you need to learn a bit
more about switch management before you can deal with that one.

Summary

You have now been provided with a bare minimum of what it takes to program in ANSI C.
With your experience with other programming languages, particularly C#, you should be
able to play around with ANSI C quite productively, and you will learn more of what the
language looks like and what it can do as this course progresses.

| NCP1503 Topic 2 Page 48 |




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

Numeric Manipulation

A review of bit basics is prudent at this point, as an understanding of binary and
hexadecimal will be assumed throughout the rest of this course.

Understanding Base 10

Base 10, or decimal, is a good radix to begin with, as you are familiar with it. We know that
each digit contributes the digit value * 10", where n is the zero-based index of the digit,

working right to left. Consider the number 34389510:

Digit 310 410 310 810 910 510
Position Value 10° 104 103 102 10! 100
Digit Value 30000010 | 4000010 300010 80010 9010 510

34389510 = 30000010 + 4000010 + 300010 + 80010 + 9010 + 510
34389510 = 34389510

This pattern seems obvious for base 10, but works for base 2 (binary) and base 16

(hexadecimal) as well.

Converting Binary to Decimal

In binary the number is valued as the sum of each digit * 2", where n is the zero-based

index of the digit, working right to left. Consider the number 1001015:

Digit 1> 02 02 12 02 1
Position Value 2° 24 23 22 2! 20
Digit Value 3210 O10 O10 410 010 110

1001012 = 3210 + 410 + l1o

1001012 = 3710

The system shown above is called "Weighted Sum of Powers”.

| NCP1503

Topic 2

Page 49 |




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

Converting Hexadecimal to Decimal

Hexadecimal is no different, other than including A-F as digits to allow each hex digit to
represent one of 16 different values.

Decimal | Binary | Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Consider the number 3D5F2A16, converted as shown below using weighted sum of powers:

Digit 316 Die 516 Fie 216 Aie
Position Value 165 164 163 162 16! 160
Digit Value 314572810 | 85196810 |2048010 384010 3210 1010

3D5F2A16 = 314572810 + 85196810 + 2048010 + 384010 + 3210 + 1010

3D5F2A16 = 402205810

Converting Hexadecimal to Binary

Converting hex numbers to binary and vice versa is nice and easy, as each hex digit can be
converted to a nibble. You may use the lookup table above, or your brain, to do the
conversion. Using this technology, the hex number above (3D5F2A16) could easily be
converted to binary. Always remember to work right to left, and strip any leading zeros on
the result (unless you want to show a specified number of bits in your result, regardless of

what they are):

Hex 316 Dis 516 Fie 216 Ais
Binary 0011 1101 0101 1111 0010 1010
3D5F2A1s = 001111010101111100101010>
or
3D5F2A16 = 1111010101111100101010;
| NCP1503 Topic 2 Page 50 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Converting Binary to Hexadecimal

Converting binary to hex requires that you work right to left ‘snapping’ the binary digits into
nibbles, padding the left-most digits with zeros to fill the final nibble, if necessary.

For example, convert 1101010010101011010111> to hexadecimal:

Binary 1101010010101011010111>
Nibbler 0011 0101 0010 1010 1101 0111
Hexadecimal 316 516 216 A1e Die 716

1101010010101011010111> = 352AD71s

8 Bit Arithmetic

You will principally be concerned with 8 bit numbers while coding. Mastery of all that is

8 bit needs to become part of your mental fabric — stat. Typically when you look at a binary
or hexadecimal number, you assume it is unsigned. The fact that binary and hexadecimal
numbers have no sign notation for ‘negative’ contributes to this. There are times when
numbers need to be interpreted as signed, and binary numbers may be 2’s complement
coded to manage a signed value. Please note, before we get too far here, that there is no
way to determine if a binary number is intended to be signed or unsigned - it is entirely up
to context and interpretation. The S12XCPU has instructions that will assume that an
operand is signed, and will interpret the binary number that way. These instructions are
fairly clearly marked.

Binary numbers that are interpreted as being signed consider the most significant bit as
contributing a negative value. This means that for an 8 bit number, the most significant bit
will contribute -128 (-27), if it is set:

Bit Pattern Hex Value Unsigned Decimal Signed Decimal
Value Value

%00000000 $00 0 0

%10000000 $80 128 -128

%11111111 $FF 255 -1

%01111111 $7F 127 127

From this, we can glean a couple of important points:

e Representation of -0 is not possible

e The MSB directly represents the sign of the number (but not as a fundamental flag)

| NCP1503

Topic 2

Page 51 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Working with 2’s Complement
To code a number as 2’s complement, you take the 1’s complement and add 1.

NOTE: You only code negative numbers in 2’s complement - if a number is positive and fits
the signed range, then you need do nothing.

Consider the number -9410. First, determine the binary representation of the number:

94 01011110
Next, take the 1's complement: 510100001
Add 1 %$10100001
+5% 1
$10100010

- OR -
94 01011110
Start at the right and copy bits until you 510100010

encounter a 1, then invert the rest:

2's complement is used to resolve subtraction with addition. You use 2’s complement form
to effectively flip a negative sign to a positive sign. This only has an effect on negative
numbers. For example, consider the problem of 15 - 6:

15 = $F = %00001111
6 = $6 = %00000110

Because it's negative, convert the 6 to 2's complement, then add to the 15:

$00000110 ($06)
$11111010 (SFA)

00001111 +
$11111010

$100001001 (discard overflow = $9)

So... 15 - 6 = 9 apparently...
If you were to try a problem like 6 - 15, you would find that the 15 needs to be converted
to 2's complement, followed by addition:

$00001111 ($OF)
$11110001 ($F1)

00000110 +
$11110001

%$11110111 (bit 7 set, so negative; take 2’s complement to get the value)
%$00001001 (answer is -—-9)

So0..6-15=-9..

This, of course, would work exactly the same way if the problem was -15 + 6.

| NCP1503 Topic 2 Page 52 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Topic 3 -Interfacing With Internal and External Devices

Required supporting materials
e This Module and any supplementary material provided by the instructor

e Device documentation provided in the appendix of this CoursePack
e CNT MC9S12XDP512 Development Kit and 12 VDC Power Adapter
e USBDM Pod or BDM Pod and “A to B” USB Cable
e CodeWarrior

Rationale

Well-structured and documented code results in dependable and maintainable systems.

Expected Outcomes

The following course outcome will be addressed by this module:
Outcome #3: Interface with onboard, simple GPIO, and programmable devices.

As this course progresses, you will refine the basic skills and understanding of embedded
systems through programming the 9S12X using ANSI C.

Connection Activity

Some devices are relatively easy to access or control. These devices require no internal
programming, and often only require communication in one direction with no feedback.
You've already read from a bank of switches and written to three LEDs. Another device on
your board, the ICM7218 LED Display Driver, is similar in that it receives simple instructions
through a GPIO port, and provides no feedback to the microcontroller.

Many microcontroller devices need, at some point, to send meaningful information to a
computer or other communications-enabled device and/or receive meaningful information
from such a device. This kind of activity often uses Asynchronous Serial Communication.

Microprocessors can manage a large number of devices and can transfer a large amount of
data quickly because they use parallel communication arrangements. Consequently, many
devices - such as memory ICs, banks of LEDs, and pixel array displays, have been designed
to operate using parallel communication. However, the microprocessors embedded in most
microcontrollers do not directly provide access to the address bus, the data bus, and the
various control lines. Instead, designers must “recreate” the necessary interface lines using
the general purpose I/0 bus pins available on the controller.

Disclaimer

In earlier years in CNT, all of the programmatic control of the peripherals was done using
variants of Assembly Language. Recently, the course has migrated to a heavier emphasis
on ANSI C. Since the material developed in Assembly Language is still valid for the
microcontroller you're currently using, the associated material has not been removed. You
may find it useful, either if you choose to write some code in Assembly Language or if you
choose to use it as reference material to help you gain a broader understanding of what is
being done in the ANSI C adaptations.

| NCP1503 Topic 3 Page 53 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Interfacing the ICM7218A 8-Digit LED Display Driver

At this point it is difficult for you to display program output in a very meaningful way. The
8-digit LED seven-segment display driver would significantly add output capability to your
programs. We will discuss this device now.

The ICM7218A is not a very complicated device, but it does require addressing and
command codes to operate. This is more challenging than operating a simple indicator LED,
but comes with the benefit of displaying far more useful information.

The first thing to note is how the device is connected to your 9512X. The ICM7218A device
requires 8 instruction/data connections, and 2 control signal connections. On your
development board, the instruction/data connections have been tied to Port B, and the
control signals have been tied to PAO and PA1 of Port A. All communication to the
ICM7218A device will occur through GPIO on these two ports.

{sss C[1}e - 78] GROUND
SEGE [2] 27] SEG A ™
To Sev Seg Displays — SEG B 726) SEG G

E 25) SEG D
PB6 106 (HEXA/CODE 8) [ | 24 SEG F
PB5 105 {DECODE) [ | 73] DIGIT 3 >T0 Sev Seg Displays
PB7 107 (DATA COMING) [T ] A1AXIAM [77] 0IGIT 6
PAO WRITE [8] /CMm7218A [Z] DIGIT7
PAl MODE [ 9] 20] DIGIT 4)
PB4 104 {SHUTDOWN) [10] 9] v
PB1 101 7] 18] DIGIT 8)
PBO oo (37} [17] DIBIT 5
PB2 102 [T3] 78] 0i6IT 2 (= To Sev Seg Displays
PB3 103 (4] [15] DIGIT |

-~

The ICM7218A is able to interpret input in @ number of ways, and may be commanded to
update single digits or update multiple digits. The full operation of the device is beyond the
scope of this document, but is something you are encouraged to investigate.

The easiest way to get output on the display is to write a command byte to the device
(which contains a digit address) and then write out the data for the digit. Because the
device is connected to the 9S12X through GPIO, you must manually produce the correct
signals to have this happen. Before any signals may be generated, Ports A and B must first
be configured correctly.

You will only be writing to (not reading from) the ICM7218A, so all port pins used should be
configured as outputs. It is also important that the active low “/write” line of the device
stay high until you actually write to the device. To protect against this, you should set the
outputs on the port to HIGH before your set the data direction registers for the ports.

| NCP1503 Topic 3 Page 54 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The code below is an S12XCPU Assembly Language initialization subroutine for the
ICM7218A. To begin with, the two 9S12X ports attached to the device need to be set up as
outputs. Good design procedure indicates that the data on the port should be set to a
known condition that will have minimal effect on the connected device when the port is
enabled as outputs, as shown in the following code.

: Ex T L L EEEEEEE L L L EEEEEEEEELEEEEEEEEEEELEEEEEEEEEEEEEEEEEEEEEEEFE3
¥ SevSeg_Init

: *

c#Fegz affected: none

.3

;#5etz up Port A4 for the Seven Segunent Controller as control,
;#¥5Set=z up Port B for the Sewven Segmnent Controller as data

] only bl and b0 of Port & are u=ed

o clear= all eight digit= u=ing 8-digit =seguential commands

.3

: 3£ 3E 35 36 36 36 36 36 363636 3 35 35 36 36 36 3 363636 33536 36 36 3 3 33 3336 36 36 36 36 3 33 3336 36 36 36 36 I I3 I I 33636 36 336 I

SevSeg_Init:

BSET PORTA, 00000011 cresting =tate: mnode and swrite HIGH
BSET DDEA, 00000011 cmake Al (mode) and AD (Awrite) outputs
MOVE #%11111111.DDRE ;make all PORTE outputs

JSR SevSeg BlAall

RTS

Note the use of "BSET” for DDRA and PORTA. By only affecting two bits in this register, the
rest of PORTA is left untouched, which means it can be used for other purposes if desired.

This routine will correctly initialize the ports for communication with the ICM7218A device.
However, there’s no guarantee as to what will appear on the display digits when the device
is first accessed, so the last line in the header is a lie at this point - this line could be
included in the actual code once a subroutine called "SevSeg_BIAIl” was written.

The following pages will provide you with a working knowledge of the operation of the
ICM7218A seven-segment display driver, so that you can write code to display values on
the seven segment display array.

| NCP1503 Topic 3 Page 55 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The Maxim ICM7218A data sheet can be found here:
http://datasheets.maximintegrated.com/en/ds/ICM7218-ICM7228.pdf

Here are the most important programming-related tables from this data sheet.

ICM7218A Programming Tables
8 Digit LED Display Driver

Table 1. Input Definitions, ICM7218A and ICM7218B Ty
Note: Pin Configurations for the ICM7218A/B are shown on last page. n
INPUT PIN STATE FUNCTION t
WRITE 8 High Input Not Loaded Into Memory \l
Low Input Loaded Into Memory N
MODE 9 High Loads Control Word on WR ~d,
Low Loads Input Data on WR m
1DO-1D2, 12, 1,13 High Loads “one” \
DIGIT ADDRESS Low Loads “zero” -y
ID3. BANK SELECT 14 High Seloct RAM Bank A (Hox or Code B 2)
Low Select RAM Bank B Data only) g
1D4, SHUTDOWN 10 High Normal Operation
(MODE High) Low Shutdown N
D5, DECODE/NO DECODE 6 High No Decode N
(MODE High) Low Decode N
D6, HEX/CODE B 5 High Hexadecimal Decoding m
(MODE High) Low Code B Decoding
ID7, DATA COMING 7 High Data Coming (control word)
(MODE High) Low No Data Coming (control word)
IDO-1D7, INPUT DATA 5-7, 1014 High Loads “one” (Note 1)
(MODE Low) Low Loads “zero” (Note 1)

MNote 1: A “zero” or low level on 1D7 turns ON the decimal point. In the NO DECODE mode, a “one” or high input turns ON the
corresponding segment, except for the decimal point which is turned OFF by a high level on ID7.

Getting the device to display information can be done in a variety of ways. You have the
ability to turn on individual segments of any of the 8 digits ("No Decode” - the digits map as
shown below), but the easiest thing to do is have the device decode the input as Hex
(“Decode” -> “Hexadecimal Decoding”). Another option is "Decode”->"Code B Decoding”,
which produces a different set of characters including H, E, L, P and Blank but not the top
Six Hex numbers, A - F.

Q D3| 1D2 | 1D1 | 1D0 | HEXADECIMAL | CODE B | a
N 0 0 0 0 e 2 N’
N - tfaffo

0 0 0 1 1 1
N %) -
: 0| o 1 0 2 2 e c
o 0 0 1 1 3 3 o o

- +
: o[ 1 o] o ‘ ‘ d
Q o0 0 1 — Segment Assignments
- ol 1 L 6 [ & ] Microprocessor Interface, ICM7218C
N 0 1 1 1 2 2 and ICM7218D
N Ot | |
: 1 0 0 0 8 8 Data Input ID7 |ID6|ID5|ID4 (ID3 |ID2|1D1 |IDO
—_— 4 -+ b|

0 1 0 0 1 9 9 Controlled | Decimal | A |[B |C |E |G| F |D
4 Y 0 1, 0 l 0 l Segment Point

1 0 1 1 b E

1 1 0 0 c H

1 1 0 1 E L

1 1 1 0 E 2

- { —_— SR

A B | | 1 F l (Blank)

Figure 7. Display Font

| NCP1503 Topic 3 Page 56 |



http://datasheets.maximintegrated.com/en/ds/ICM7218-ICM7228.pdf

| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Sending Data to the ICM7218A

To get a digit on the display, you must send a control byte to the device that describes the
digit address and mode of operation. After this you must send the byte value for the digit.

The device will require that the /write line to be lowered then raised to latch the data. This
is referred to as “strobing” the /write line. The mode control signal will determine if the
byte being written is a control byte or a data byte. Here are two timing diagrams from the
datasheet that show how this works:

Moo MODE - High wooe /)

J— WRITE
WRITE
G,
100103
s A
/ X 107 = LOW

SEE INPLT DEFINITIONS, TABLE 1

0

CONTROL
D407 WORD
o 107 = L0w

Figure 4. Control Word Update Timing—ICM7218A/B Figure 5. Single Digit Update Timing—ICM7218A/8

The procedure for sending a single control command (Figure 4) is as follows:

e Control:
o Present control byte on GPIO data lines (Port B)
o Set mode HIGH and write LOW (indicate that you are writing a control byte)
o Set write HIGH (latches the control byte into the device)

The procedure for sending a single digit (Figure 5) requires both a control byte and a data
byte, as follows:

e Control (containing the address and other control bits):
o Present control byte on GPIO data lines (Port B)
o Set mode HIGH and write LOW (indicate that you are writing a control byte)
o Set write HIGH (latches the control byte into the device)

o Present data on GPIO data lines (Port B)
o Set mode LOW and write LOW (indicate that you are writing a data byte)
o Set write HIGH (latches the data byte into the device)

The bits in the control byte affect the behavior of the device, and, in the mode we're using,
are also used to set the address of the digit being written to. (A note of caution: other
manufacturers make versions of this controller that do not allow individual addressing of the
digits — in these, all eight digits must be written in a single sequence each time the display
is updated. The discussion in this course material is specific to the Maxim part.)

Locate the table of Input Definitions (shown previously, from page 5 in the current data
sheet). For standard writing of a hex character, you are interested in Hex mode, Bank A,
normal operation. Using the table of Input Definitions, verify each of the bits in the control
byte shown in the routine on the following page. Add an ANSI C version of this routine to
your library.

| NCP1503 Topic 3 Page 57 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Seven Segment Display Library Components

The following S12XCPU Assembly Language version of the initialization routine is included as
a reference that can be used as a jumping point for all of the library components you will
need to write for your ANSI C library. One thing you may find particularly useful from this
version of the routine is the system used for bitwise commenting the command byte.

SevSeg Char
Regs affected. none

Accepts & hex character in Accumulator & and
a location (0 to 7)) in Accumulator B and places the character

The routine sxpects the user to know the device limits,
and assumes that SevSeg_Init has been run already.

KOk Kk Rk K K % %

éevSeg_Char:
FSHA
FSHE

ANDE #x00000111 ;clean up address — only threes bits valid
—————————————— "Ho data coming” means single digit mode
| ——————— Hexadecimal Decocding

———————————— decode node

| ——— not shutdown

—————————— memory banlk A

———————— < don't mess with the address

|
|
|
|
|
]
ORAE  #x0 ] ;add control: hex, decode, no SD. Bank A
i
1

I

0
ANDA  #X00001111 ;prep the data digit: clear upper nibble
ORAA  #E10000000 : . no decimal point
STAE FPORTE ;control byte placed on the data bus

BCLE PORTA,.*00000001 ;mode =till high {control). Swrite low
BSET FPORTA,*00000011 ;resting state: mode and ~write HIGH

STah FORTE ;data byte placed on the data bus
BCLE PORTA,X00000011 :mode low {(data), ~write low
BSET PORTA, 00000011 resting state: mode and ~write HIGH

FULE
PULA
RT=S

Note how "BSET” and “"BCLR"” were used so as to preserve the state of the upper six bits of
PORTA, just in case this port is being used for some other purpose in your program. In
ANSI C, you will need to use AND or OR operators to achieve the same functionality.

| NCP1503 Topic 3 Page 58 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Seven-segment Display Control Using ANSI C

You are going to need three program files in a new project: a library header file
(SevSeg_Lib.h), an uncompiled C library file (SevSeg_Lib.c), and the main program file
within the project itself (its default name will be main.c).

SevSeg_Lib.h
The header file will probably be supplied to you by your instructor.

SoSewen Segnent Display Controller Library
SoProcessor: MC9S12HDPE1Z2

S#Crystal: 16 HH=

<«by P Ross Taylor

S« June 2015

void SevSeg Init(woid):

void SevSeg Char{unsigned char, unsigned char); #»digit address and character

void SevSeg BlChar{unsigned chaxr): sodigit address

vold SevSeg BlAll(woid):

void SevSeg dChar{unzigned char, unsigned char): s»digit address and character

void SevSeg Topd {unsigned int); Sofour chars compressed a= four nibbles in an int
void SevSeg Botd{unsigned int); Ssfour chars compressed a= four nibbles in an int
void SevSeg Cust{unsigned char. unsigned char): Asdigit address and selected segments
SevSeg_Lib.c

Now comes the task of creating the actual library and the functions to match the prototypes
in the header file. The library file needs to be linked to the files it will be using, which
include the ones set up when a project is created: the ANSI C library hidef.h and the
derivative.h file set up to provide the labels for all the ports in our particular 9512X
microcontroller. Also, if any of the functions call other functions in the library, it needs to
be linked to itself. Notice again the different syntax for including a standard compiled
ANSI C library and for including an uncompiled library. As previously discussed, you will
need to add both the .h and .c files for the uncompiled libraries to the project, whereas the
compiler will find the standard library without our help.

s«Beven Segment Display Controller Library

SeProcessor:  MC9512XDPL12

SoCrystal: 16 MH=

s+by P Fo== Taylor
s June 2015

¥include <hidef h»
¥include "derivative h”
tinclude "SevSeg Libk k"

The first function you’ll need is an initialization routine that does what the Assembly
Language version did. In this case, we can do practically a line-by-line translation into C.
This will not always be the case when moving from Assembly Language to C, as the thought
processes involved in programming for the two languages is fundamentally different.
Sometimes, Assembly Language provides the most succinct and efficient result, whereas
other times the structured nature of C will allow the programmer to easily control program
flow in ways that would be difficult to achieve in Assembly Language. Here’s a suitable
initialization function, but with the screen blanking function disabled until we build it.

wold SevSeg Init{woid)

PORTA |= 0bOOOOOO11; sopreset control lines high
DDREA  |= 0bOOOOOOD11: soA00 1 outputs
DDEE = 0b11111111; ~+all PORTE ocutputs

s« SevSeg BLALL():
h

Notice the use of bitwise OR commands for working with PORTA. Again, the upper six bits
of this register are not being used for the seven-segment display, so, if we are careful not to
mess with them in our routines, they will be available for other applications if so needed. If

| NCP1503 Topic 3 Page 59 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

we had written an entire byte to PORTA and DDRA (i.e. PORTA = 0b00000011 and
DDRA = 0b00000011), we would have messed up any other activity on the upper six bits.

This is a good time to create a project that you can use for testing the library you are
working on. Follow the steps outlined previously, and create a project called something like
“SevSegTest”. The following screen capture shows a sample "main.c” file, but it also shows
what needs to be done to include the library you're working on. (You won't be able to run
this code yet, as you will need to create SevSeg_Char first. At least try your initialization
routine, which, without the blanking function, will probably display garbage.)

= [ ]
EﬁnﬁMc [::].!'
SevSegTest.mcp l
b ~{}~n~ v o' v Path: C\Usershrosst Desktopt35 12X\ Projects\Sev Seq Test\Sources \main.c
| eom Cl@e vy &5 ,
Files ]LmkDMQ]Tamas] * Library includes P
o filc Code | Data | |- #include "SevSeg Lib.h'
¥ =23 Sources 924 1 e =~
W - main.c 29 1+ = P
-l datapage.c 546 0« = * Frototypes
" @ SewSeg_Lib.c 343 0s = -
=13 Includes 1] 1] =l
- derivative h 0 o o=
fl mcHs12xdpB12.h 0 0 =l P
@ SewSeg_Lib.h i} i} =l N
+-{7 Project Settings 49 B+ = * Variables P
+{_3 Libs TESF 2786 . =

unszigned char cCount = 0;

s
* Lookups=

void main{void) <7 main entry point

_DISABLE_COP():

*

Initializations

SewSeg_Init():

for (::1 ssendles= programn loop

*

Hain Program Code

-
for (cCount = 0;cCount<d;cCount++)

SevSeg_Char{cCount ,cCount); ~ puts the digit address on display

HALT

+
+

To include the library you're building you need to do three things:
1. In the browser to the left of the screen, search for and add the library’s “.c” file
under “Sources”.
2. In the browser, add the library’s “.h” file under “Includes”.
3. In the main file, put in the #include statement as shown.
In the main file, notice that a counter variable has been declared and initialized in the
“Variables” section.

SevSeg_Init() is called in the “Initializations” section, outside of the main loop for the
program. You only want to initialize the ports once - not each time through the loop.

Since this entire code was only intended to be run through once, there’s a HALT command
to stop execution at the end. This is not usually a useful command in a microcontroller
program, but helps us with testing or troubleshooting functions as we program.

It's up to you now to build the rest of the functions in this library. For each item, make sure
you adhere to the prototype in the .h file. Here’s a sneak peek at a suitable function for
blanking a single character, passed as an address between 0 and 7.

| NCP1503 Topic 3 Page 60 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

frrequires a digit address (0 to 73 to blank —
I-"\Ecuid SevSeg BlChar({unsigned char cDigit) ""-x.k__\
| cDigit &= 0bOOOOO111: ~“clean up in case of error \.
| cDigit |= 0b01111000; ~~=ingle digit, {(don't care). no decode, no S0, |
\ PORTE = cDigit: \
% PORTA &= 0b11111110: ~~Mode staws high. strobe ~Trite

“E‘\ORTA |= 0bOOOO0O011; ~#~back to resting state — Mode and ~Write high ‘

N TE = 0bl0000000; ~«turn off all segments and dp
A &= 0b11111100; ~~Mode low for data. strobe ~Write I
= 0bO00O0O011; ~~back to resting state — Mode and ~Write high/

o

Once you've created the above function for blanking a single character, you can use it to
blank all eight digits. A good way to do this, using the ANSI C way of thinking, is shown
below.

s<blanks the display u=ing the SevSeg_BlChar routine in an 8—cvycle loop
vold SevSeg BlALlLl{wvoid)
{

unsigned char cCount;
for{cCount=0;cCount<8 ;cCount++)

SevSeg BlChar(cCount);
t

Go back to your initialization function and enable the line that calls SevSeg_BIAll(). You
should now be able to display a completely blank set of eight digits on the seven segment
display. (I know, I know, it's pretty exciting to you, but the average person on the street
won't understand, so don't rush out looking for someone to show this to!)

Once you've created a function for displaying a single digit at a specific location, you should
be able to run the code shown on the previous page. Then you should be able to finish off
the rest of the items required for this library, as shown in the header file.

Hopefully, you can see how what you’ve learned in your C# courses transfers to writing
code in ANSI C, which was the original language from which all the various C-family
derivatives grew. With a basic knowledge of the operation of the 9512XDP512, a chance to
work at the machine level using S12XCPU Assembly Language, and a fair bit of experience
programming in C#, you should soon be able to make your microcontroller development kit
carry out some fairly sophisticated activities.

Binary-Coded Decimal Representation and Manipulation

At this point, you're probably aware of two conflicting realities: Your microcontroller only
talks binary, which we often compress into hexadecimal for easier viewing; and the bulk of
humanity works with decimal numbers.

The cross-over between these two systems is something called Binary-Coded Decimal
(BCD), a system that uses hexadecimal (actually binary) coding to represent decimal
values. It's important to remember that BCD is a code, not a real number system. It's a
way to use hexadecimal values to represent decimal numbers. Real math must be done by
your microcontroller using hexadecimal (“real numbers”). BCD is only for display purposes.

In BCD, the upper six hexadecimal values (ABCDEF) are not be used, since they’re not a
part of the decimal number system. Instead, after 0123456789, the sequence must roll

over to 10. The microprocessor will consider this to be 1016 because it only does binary

(shown here as hexadecimal). But it looks like 1010 to the rest of us, and, properly used,
would be the BCD representation of 1010. For clarity, we’'ll use the notation 10sco.

BCD’s only purpose is to display values in a form humans are comfortable with. Just
because they could, the designers of microprocessors made by Freescale have included the
DAA (Decimal Adjust Accumulator A) command that allows you to do simple addition of BCD

| NCP1503 Topic 3 Page 61 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

values. This author’s recommendation is that you let your microcontroller do all its work in
hexadecimal (true numeric values), then convert the results to BCD when needed for a
human interface. Other instructors may feel differently — humour them if necessary.

Converting Hexadecimal Values to BCD

In a previous course, you learned the “Division with Remainders” method of converting from
numbers of any base to decimal. Division with Remainders involves dividing the number
repeatedly by 10 (i.e. A1e), each time concatenating the remainders together, starting at the
right and moving left. Here’s an example:

Convert 123Fi6 to decimal.

0, R:4
A)4, R

A) 2E,
A)1D3,

A)123F

:6
R:7
R:1

Final result: 123Fis = 467110, or for human display, 4671sco
If we used a microcontroller to hold or display this value, it would hold it as 467116, which is
certainly not 467110, nor is it intended to be thought of as 46711s. That’s why we use the
notation 4671scp, and why we only use this to represent the value as a coded
representation that humans are comfortable with.

Also in your previous course, you developed and used a Hexadecimal-to-BCD converter
using S12XCPU Assembly Language. Here’s one version of that routine:

= Hex2BCDS
L ®
# 4-nibble hex to S5-digit BCD converter Q
*
;#* Hexadecimal walue arrives in D BCD returned in X and D . (:)
# with the most significant digit in X
*
;®* Registers affected X and D only @
I
‘:%ﬁ**!**

Hex2BCDS:

PSHY ;Save contents of Y § ater

LDY #5 Downcounter for a it loop
Hex2BCDSLoop :

LDX

#10 ;Division with r @ers nethod ~10
IDIV Answer is in KG dinder in D (i.e. B)

PSHE Store remaind from "right to left"”
TFR I.D ;Put answver i or next division
DENE ¥, Hex2BCDSLoop Decrenent ghnter

Hot at theMgmM?7 Loop again

CLRB :now haw igits on the stack: need 6.

FSHE so pd on the stack

PULX ;pul Nfirst two digits (0 and 10,000's)
PULA 000's off stack

ISLa ft it into the high nibble. .

LSLa
LSLa
LSLa

ADDA 0.SP Q)

and add the 100's, so 1000's and 100's are in A

INS % move up to beginning of 10's

FULB % ;pull 10's off the stack..

LSLE shift it into the high nibble

LSLE

1SLE

1SLE

ADDE 0.SP and add the 1's, so 10's and 1's are in B

INS increment the stack so it's ready for a pull

PULY restore original value of Y

RTS and go back to the main program with answer in X and D

Notice that this routine does the entire hexadecimal to BCD routine in the six lines of the
“Hex2BCD5Loop”: the rest of the subroutine is concerned with compressing the resulting
BCD representation into the D Accumulator, with the fifth digit in the X register.

| NCP1503 Topic 3 Page 62 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Using ANSI C, all of the details of packing and returning the coded characters can be
handled by the cross-compiler. Also, since we're no longer directly concerned with the sizes
of the accumulators, we can change our parameters.

In the Assembly Language version, we chose to return a five-character value because the
largest number we could send, in a sixteen-bit register, was FFFFis, or 65,535scp, which is
five characters. Of course, that's difficult to display on the seven-segment displays we've
got, at least in the way they’re configured. On your own, you could build a board that has
the displays side-by-side, in which case displaying five digits would make sense.

Now that we’re no longer directly tied to the size of the accumulators, we’ve got some
decisions to make:

e The way our board is configured, it probably doesn’t make sense for us to work with
numbers larger than 9999scp, or 207Fis, if the target is the seven-segment display.

o If we want a generally-useful hexadecimal-to-BCD converter, we could choose to
work with a “Long” data type, in which case we could return eight characters and
raise the size of the number we're working with to 99,999,999scp, or 5F5EQFF1s.
Handling all the digits returned by the function would then be up to the programmer.

e If the target is some device that works in ASCII, such as the LCD display, a
computer acting as a “"dumb terminal”, or a Raspberry Pi, you might want to display
your values as floating-point numbers converted to ASCII strings, formatted using
the “sprintf” function available in the ANSI C “stdio.h” library.

For simplicity, let’s work first with simple 4-digit converters suited to use with the seven-
segment display, which is looking for actual numbers (i.e. 0 to F in hexadecimal or 0 to 9 in
BCD), not ASCII (which would be 0x30 to 0x39 for both hexadecimal and BCD, and 0x41 to
0x46 for the rest of the hexadecimal numbers).

You are going to need a library for various miscellaneous functions. Here's a header file for
this library, called “Misc_Lib.h", and it shows you the functions you will eventually add to
the source-code library. It's best that you comment out the prototypes that you haven't
developed code for, and enable them when you're ready to use them.

Misc_Lib.h

ssMiscellaneous generally—ussful routines
s<Processor:  MC9S12EDPE12

S/Cry=tal: 16 MHz

ssby P Roz=s Taylor

soSeptenber 2016

ssBinary—Coded Decimal conversion routines

unzigned int HexToBCD{un=zigned int}); < integer math: result iz BCD - not converted to ASCII; make it d-digits for sev-==g display
un=igned int BCDToHex{un=igned int): s integer math: regquires BCD — not ASCIT equivalent: make it 4-digit=s to complement HexToBCD
#<AECTII-Code handling routines

unsigned char TolUpper {unsigned char):

un=igned char Tolowsri{un=zigned char):

unzigned char HexToASCII(unsigned char). ~»=ingle character converter

un=igned char ASCIIToHexz(un=s=igned char), ~~single character converter

S79512% simple timer routines

wold TimInitlZ2Sns(wvoid):

woid TimnInitBusi{void);
woid Sleep m={unsigned int): sorequires TinlInitBus setup; blocking delay

Notice that the routines come in three groups: BCD, ASCII, and Timer. For now, we'll just
do the simple BCD-related functions.

| NCP1503 Topic 3 Page 63 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

HexToBCD

In a source-code file named “Misc_Lib.c”, you will want to create a function that does the
Division with Remainders routine we used in the S12XCPU Assembly Language routine
previously. The code snippet below shows the heart of this routine, done using division and
modulus operations. Recall that the modulus operation (%) provides the remainder of an
integer division, whereas the division operation provides the integer result with no rounding.

Notice that there are three local variables: iBCDOut, cCount, and iPow. Declare these and
initialize them within the function, but ahead of any active code.

Prior to this code snippet, iPow was initialized to 1 and /BCDOut was initialized to 0. So,
first time through, the remainder is multiplied by 1. The second time through, the
remainder is multiplied by 16 and added to the previous remainder; in other words, it is put
in the next most significant nibble of the result. The next time through, the remainder is
multiplied by 256 and added to the result, and the last time through it is multiplied by 4096
and added to the result. Consequently, the BCD characters end up in the required four
nibbles of the final result, starting with the least significant character and ending with the
most significant character.

_ror (cCount=0;cCount<d: EEDunt++—) T Four d I9its in & EIDD Y

< \
{ iBCDOut+=(iHexIn®10)*iPow: SsDivizion—remnaindsr conversio},l
1iHexIn-=10; I
| iPowx=14; A716 " eCount -~
SO - - —

In your function, you should also provide some sort of error trapping. If the number sent to
the function is greater than 9,999, it’s probably best to return some recognizable value
that’s out of range rather than some gibbled half-BCD/half-hex result. If we return FFFF, it
should be clear that this represents an error, as BCD does not include the character 'F'.

| NCP1503 Topic 3 Page 64 |




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

BCDToHex

As with HexToBCD, we’ll create a simple routine to convert integers up to 9,999scp to their
equivalent true number values in hexadecimal so that the microcontroller can use them for

numeric calculations.

In your previous course, you worked with an S12XCPU version of this
routine, as shown below. This routine is pretty complex, given that we needed to

manipulate the digits individually, and, to avoid variables, we used the stack for storage.
One item we won't be able to duplicate easily in C is indicating a valid value using CARRY.

i= ECD2Hex4
.
;% d-—digit BCD to hex converter with error checking: not BCD = 0000 and Carry
o=
;» BCD walums arrives in D, hex returnhed in D
L%
%= Registers affected: D only
b
BCD2Hexd :
PSHE
PSHY
TER D.X ;for now, hold BCD in X
ECDCheck :
ANDB #100001111 ;check for valid 1's digit
CMFB #5009
EHI ErrorBCDtoHexd
ANDA #400001111 :check for valid 100's digit
CMP4 #3089
EHI ErrorBCDtoHexd
TFR XD ;get original BCD again
ANDB #x11110000 :check for valid 10's digit Q
CMFB #3590 - 0
BHI ErrorBCDtoHexd N
ANDA #:11110000 ;check for valid 1000's digit Ks
CHPA #3590
EBHI ErrorBCDtoHex4 @
ERA BCDConvert cif all are valid. continums
ErrorBCDtoHe=d:
LDD #0 if not. return zero q)
SEC c=et Carrv Flag a=s err 1cator
BR4 FinishBCDtoHe=4 and leave
BCDConvert :
TFR D
ANDB #400001111 ;salect 1's digit
FSHE ;put it on the
CLRB ;and pad it wi ::o fnr 16 bit add . ..
PSHB :on the Stal:
TFR XD :grab the nal .
LSEB :shift over va ‘s dlglt
ISEB
ISRB \
LSEB
FSHE ,put, n the stack ..
CLEB it with a zero for 16 bit add .
PSHB e stack
TFR X.D %ab the Dr:q:nal again
ANDE #400001111 t the 100 digit ..
PSHA put, it on the =stacsk . ..
CLRA % ;and pad it with a zero for 16 bit add ...
PSHA v. ;on the stack
TFR XD :grab the original one last time
1SRA ;=hift over the 1000's digit ...
LSRA
LSR&
ISRA
TAB :move it to the low byte of D
CLEA ;blank the high byte of D to start with D = 1000°'s digit
IDX #3 :FOR loop downcounter for 3 passes
calgorithm:  hem=({{{Th=s*10)+Hun=s)*10)+Tens)*10+lnes
Veightedloop:
DY #10 :going to multiply current wvalue by 10 ...
EMUL ;uzeful part of answer is in D
ADDD 0.SP ;add in the next digit
IHS :move the stack pointer past the used digit
INS
DENE X.WeightedLoop .not the last digit? Loop again
CLC .Carry Flag cleared for good answer
FinishBCDtoHe=4 :
PULY
PULX
RTS
| NCP1503 Topic 3 Page 65 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

This routine doesn’t need error trapping for the size of the number, because the
hexadecimal value will always take the same or fewer nibbles. However, it does need a trap
for invalid characters (A through F, since these are never valid in a BCD representation of a
number). Since there’s no particularly easy way, like checking the CARRY bit, to indicate an
invalid BCD value, we'll simply return a value that is out of range and leave it up to the
programmer to decide what to do with that.. Again, FFFF is a good choice, since the biggest
return value is 270F. The programmer can be left to decide what to do with errors.

Since the logic and mathematics behind this routine can be a bit complicated, a fully-
functional version of the code is shown below. Before you simply copy this routine, make
sure you understand how it works. Other instructors may ask you to use or develop slightly
different code to perform the same task — being nice to them will be to your advantage!

#<BCDToHex handles numbers up to 4 digits (9999), returns Hex as ¢ bytes (int)
ssdoes= not require the math h C library
un=s=igned int BCDToHex({un=s=igned int iBCDIn)
{
un=igned int iHexOut=0;
unsigned char cDigit.cCount;
unsigned int iPow=1;

for (cCount=0:cCount<4:cCount++)

{
cDigit=1BCDInX*0=10; s+ lozate right-mo=t digit with a MOD 16
if (cDigit<10) Ssmot walid BCD (0-9)7 might a=s= well guit!
iHezOut+=cDigit#*iFPow; ~smultiply by correct power of 10 and add
1BCDIns=0=x10; Soget ready for next digit by diwviding by 16
iPow==10; A#10 " hoount
tel=e
1iHexOut=0=FFFF: Ssarror? return FFEF
breal:; <o . and breal out of loop
b
return iHezxOut:

¥

First of all, notice how much more compact the ANSI C version of this routine is than the
S12XCPU version! To a great extent, that’s because we can declare and use local variables,
so we don’t need to manipulate the stack. (Incidentally, the C compiler may ignore your
declared variables and use the stack instead - you’ll never know until you disassemble the
code to see what it did or try to trace the variables, which won’t be listed if the compiler
chooses not to use them. Some of us old-guard programmers find that mildly disturbing.)

Notice that we use 16, (i.e. 0x10), in our division and modulus calculations. That’s because
the microprocessor only really works in binary (i.e. hexadecimal) values, so even if we
picture a BCD value as a real number, the microprocessor thinks of it as hexadecimal. So,
to correctly locate and identify the characters, we need to work with them in groups of four
bits, or 16’s, not 10’s. For example, consider 1264gscp: 0x1264 / 16 = 0x126 with a
remainder of 4. By doing so, we identify the lowest digit, and preserve the upper three
digits for the next stage of the calculation. If we tried 0x1264 / 10, we'd get 0x1D6 with a
remainder of 8, which is no use to us at all.

Once we identify the characters, we multiply them by powers of ten to make them into real
numbers, which we add together to get the final true number. In the above example, we’'d
get 0x4F0, which is — you guessed it - 126410.

Each incoming character is checked to see if it is valid for BCD. If any invalid character is
encountered, we break out of the loop and return FFFF.

| NCP1503 Topic 3 Page 66 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Switch Management
Switches, as user interface devices, have two complicating features:

e Long Activation Times
e Bounce

Consider a computer keyboard: When you press a key, the mechanical action of that key
results in a number of connects and disconnects while the spring mechanism settles down.
Once the key is pressed, your finger remains on that key for a certain period of time, which
seems quite short to you but could be thousands, even millions of cycles of the computer’s
clock. How does the keyboard controller “know” that you only intended one instance of that
particular keystroke, even though it's aware of multiple quick changes of state followed by
thousands of readings of the switch’s new condition? Let's work through these problems.

Detecting Switch Change of State
There are basically four ways to write a program to respond to switches.

e The first situation is one in which it doesn’t matter if the switch condition is read
thousands or millions of times - the output directly relates to the current condition of
the switch at all times.

For example, you could have a program that turns the RED LED on as long as the
LEFT switch button is pressed. “while (LEFT()) RedOn;” is pseudo-code for this.

The other three are ways to make it so that your program will respond just once to each
button press or change of switch condition.

e One way is to have the program branch away from the routine that’s checking for
the switch as soon as the switch change is detected, thereby ignoring the condition
of the switch until it is needed again. State Machines use this technique, staying in a
particular state until a transition condition occurs to go to a new state. This works
well in menu-driven applications, too, where selecting an item from a menu sends
the microprocessor off on a particular task that doesn‘t check the switch again.
if ({PT1AD1&OBOCOLOOOOY ! =0) ~~TFP: redirects to another routine if pressed

TpHandler():

e A second way is what's called a blocking routine, where the program is held up until
the switch condition changes back to its original condition. For example, the switch
may normally be open. When it is closed, the program executes the desired action,
then enters a loop, waiting for the switch to be released before it continues on to
other commands. This blocking action may or may not be an issue. If you have
other things that the program should be doing, holding it up waiting for a switch to
be released is a bad thing; but if your program has nothing better to do than wait for
the switch to be released, blocking isn't a problem.

1f (PT1AD1&OBOOOOLIO0O0O) ##LEFT switch pressed?

{
SevSeg Topd (++iCount )

while{FT1AD1&0bOOOOLO0O0Y; »»wait for LEFT release: blocks program

A variant of this which is sometimes useful is to wait for the switch to be released
before executing the code. For most applications, this feels odd, because the action
doesn’t happen when you press the button - only when you release it. You're
familiar with one application of this: touch screen item selection. With a touch
screen, you can put your finger on an icon or control on the screen, but it doesn’t
respond until you lift your finger. This allows you to change your mind - if you
decide you don’t want to do what you‘ve just touched, you can move your finger
away before lifting, and the originally-selected action doesn’t happen. This would

| NCP1503 Topic 3 Page 67 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

not be a good thing to do with an emergency shutoff switch, though - you want the
equipment to stop as soon as you press the switch, not when your unconscious body
finally falls away, releasing the switch!
if (FT1AD1&0b0OO0OOO0O10) #/RIGHT =witch pressed?

i

while(PT1AD1&0BLOOOOOO10): ~vwait for RIGHT relea=s: blocks program
SevSeg Topd (++iCount);

Remember that either of these will “block”, or hold up the processor, which may not
be acceptable. Choose wisely!

e The non-blocking way to handle this is to use memory (i.e. a variable) to keep track
of the previous condition of the switch. This technique is the best for continuous
loops that need to monitor a switch or a set of switches continuously, such as in a
control system or in something like a keypad or keyboard entry system for a
calculator or computer. Here’s a typical sequence:

o With the switch open, the variable is cleared to indicate that the switch has
not been pressed in the recent past.

o If at some point the switch is closed, the program compares the current
condition to the previous condition, detects a difference, records the new
condition by setting the variable, and provides an indication to the main
program that the switch condition has changed.

o The next time through, if the switch is still closed, the current condition will
be the same as the previous condition, so the routine will report no change,
and therefore the program can ignore the switch.

o Once the switch is released, the difference will be detected, the new condition
will be stored (i.e. the variable will be cleared), and the main program will be
notified that the switch has been released. The program can be set up either
to respond to this change or to ignore it (which is probably the most likely
situation).

o Next time through, the variable and the condition of the switch will be the
same (both cleared), so no change will be reported to the main program.

* Wariables

char cSwlew:
char cSwState=0;

e

* Hain Program Code
-
cSwHew=PT1AD1&0bO00O0O0100; SDOWH:  read the current condition of just DOWH
if {cSwHew!=cSwyState) ssonly enters if a change in DOWH happens
cSwState=cSvlew; ssztore new DOWH switch condition

if ((cSwState&DBDDDDDlDD)!=D) ssmeans change iz a PRESS —— ignore EELEASE
1
SevSeg_ Topd (++iCount ) :
1

Note: If you need to keep track of the states of a number of switches, read them
all at once and, if there’s a change, store all of them in the switch state variable.
Your code for the above situation, then, would look like this:

o
* Main Program Code

24

cSwHew=PT1AD1&0b00011111; <<Head the current condition of all switches
if (cSwHew!=cSwuState) ssonly enters if a change in the switches happens=
cSwState=cSwley; Sostore new svitch conditions

if ((cSwState&DEDDDDDlDD)!=D) ssmeans change is DOWH PRESSED — ignore RELEASE
{
SevSeg_Topd(++iCount);
+

Other switches would then be checked using their own “if” statements (or a
switch - case) inside the main “if” statement.

| NCP1503 Topic 3 Page 68 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Debouncing

If you've entered and tried the previous code snippets, you've probably noticed that the
displayed count sometimes skips ahead by one or two when the switch is pressed. This is
due to switch bounce, which we will now address.

The simplest form of debouncing involves detecting a change of switch state, then ignoring
all subsequent changes for a period of time that’s long enough to pretty much ensure that
the switch has reached a steady state.

A slightly more reliable debounce sequence involves waiting for a short period of time, then
checking to see if the switch is still in the new condition. If not, it must be bouncing - store
the condition, wait for another short period of time, and check again. Once the state is
consistent from one loop to the next, assume that the switch is stable and continue on.

These two types of debouncing both require a blocking loop — the program is held up in a
timing loop while we wait for the switch to settle down. It is possible to design a non-
blocking debounce routine which continues to run the main program while it waits for the
switch to stabilize, but we shouldn’t need to get that complicated in this course. The
amount of time we spend in the debounce routine is so small (on the order of 10 ms) that it
probably won't affect the routines we’re creating.

This is a good time to make a library of switch and LED-related functions to link into our
program. The following is the contents of a header file that your instructor will probably
make available to you in one form or another.

#7Syitches and LED=

ssProcessor: HMC9S12EDPS12

SsCrwstal: 16 HH=z

<~by P Ross Taylor
<~June 2015

wvoid SwLED Init{void). ~~LED= a=z outputs, Switches asz inputs. dig in enabled

void LED Onichar): s accept= E. G, ¥. & (for all)

wvoid LED Off({char): ~ accept= E. G, ¥. & (for all)

voild LED_Togichar): ~~accepts E. G, ¥. & (for all). and toggles the condition of the LED(=s) indicated
char Sw_Clki{woid): ssreturns debounced condition of all switches in a byte, LED wvaluss = 0

All but the last item in this list should be relatively easy for you to create. (Your instructor
will likely ask you to complete these items.) The SwCk() routine, which returns a
debounced version of the present conditions of all five of the switches, is provided below.
Add comments!

SwCk() Debounced Switch Routine
?har SwiZlo{woid)

char cSamplel=1;
char cSampleZ=0;

while{cSamnplel | =cSamnple?)
{

cSamplel=FT1AD1&0bOO0O1111];

a=zm LDX R2BEET s# 2667 ® 3 cycles % 125 n=s = 10 ns =7
azm DENE X%

cSample?=PT1A01&0BOOO11111] ;

return cSamplel;

¥

In the "main” program, you will need a variable to keep track of the previous condition of
the switches, as in the example on the previous page. In that example, reading PT1AD1
into cSwNew would be replaced by a call to SwCk().

In Moodle, there should be a document on switch management by Simon Walker, as well.

| NCP1503 Topic 3 Page 69 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Parallel Interfaces: Get On the Bus

For high-speed communication over short distances, designers prefer to use parallel
interfaces. These interfaces provide one conductor per bit, and deliver all bits in a particular
piece of information simultaneously.

Early microprocessors had 4-bit busses, and could communicate the four bits in a nibble
simultaneously. Later, 8-bit busses were introduced, transmitting whole bytes. Since then,
microprocessors have gone to 16-bit busses, then 32-bit busses, and now to 64-bit busses
in an attempt to keep up with the growing speed requirements in the computer market.

The microprocessor at the heart of the 9512X microcontroller uses a 16-bit bus. In fact, it
uses two 16-bit busses: one for data, and one for addresses.

Data Bus

The data bus carries information between two devices, and is typically bidirectional. In
other words, data can be sent to the device and data can be received from the device.
Some specialized devices require only one of these directions. All bussed devices in a piece
of equipment will share the same bus, but only one device can talk at a time. If more than
one device tries to talk, the results will be, at best, totally unintelligible, and at worst,
damaging to one or more of the devices on the bus. To prevent this, bus interfaces on idle
devices are put into a state called “High-Z", or high impedance, effectively disconnecting
them from the bus so they won't interfere with other devices.

Address Bus

In order for the microprocessor at the heart of a bussed communication system to talk to
the right devices at the right time, each device (and, almost always, each memory location
within a device) will be given a unique address. So, for example, when you want to see if
the switches on your board are pressed, you need to look at address 0x0270 in the memory
space of the 9512X micro - the address assigned to PTADHi. As you run your code, the
Program Counter steps its way through the addresses in ROM where the bytes that make up
the opcodes and operands in your assembled machine code reside.

The number of unique addresses depends on the number of address lines in the address
bus. If the address bus is sixteen bits wide, as in the 9512X, we can access 2'® unique
addresses, or 65,536. Obviously, your home computer’s address bus is a lot bigger than
sixteen bits in order to access all the RAM and all the peripherals it's got.

Control Lines

So, in order to talk to a device at a particular address, we must put the correct address on
the address bus. But there’s more: the device needs to be activated (placed on the data
bus), and it needs to know if data is coming to it or is required from it. Some devices need
to notify the micro that they need to be serviced, and initiate an Interrupt Request (IRQ).
Sometimes, a device also needs something to synchronize its internal activities with the
microprocessor’s bus clock. All these activities are managed by a separate set of control
lines. The following are typical for Motorola-based microprocessor bus devices:

/EN - when LOW, this line takes the device out of High-Z mode and “places it on the bus”.

R/W - when HIGH, the microprocessor READS from the device; when LOW, the
microprocessor WRITES to the device. (Some non-Motorola-based devices require separate
/READ and /WRITE lines — watch out for these if you end up doing design work!)

PH2 or ECLK - this is a clock line that lags the bus clock by 90°. It is used by devices that
require a bit of time to respond or that need to know when data on the bus is truly valid.

| NCP1503 Topic 3 Page 70 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

LCD Displays Using the Hitachi HD44780U Controller

A particular LCD controller IC is almost ubiquitous: almost any small character array LCD
will have one of the variants of the Hitachi HD44780 as its brains. In fact, Wikipedia says
“An HD44780 Character LCD is a de facto industry standard liquid crystal display (LCD)
display device designed for interfacing with embedded systems.” - lousy English, but true.
The 4 row by 20 character LCD display on your development kit is driven by one of these.

The HD44780 is, itself, an embedded microcontroller. So, in effect, your development
board an example of parallel processing — two microcontrollers running separate processes,
but communicating with each other to produce coordinated results.

The HD44780 is designed to operate within a bussed, or parallel, interconnect system. It
has eight data lines, requires a single address line to select between two internal registers,
has an active HIGH enable line (that’s unusual - “enable” is usually LOW), and a R/W line.

This controller is quite flexible. The full details of its capabilities are listed in the data sheet,
available in Moodle, with some key parts appearing as needed in this topic. Here are some
of its capabilities:

e Can be used with a variety of LCD displays, ranging from 1 line x 8 characters to
2 lines x 40 characters or 4 lines x 20 characters.

e Can be used on an eight-bit bus or, by multiplexing data lines, on a four-bit bus.

e Can print stationary characters from left to right or right to left, or can scroll
characters to the left or right.

e Can produce characters in a 5 x 8 dot matrix or in a 5 x 10 dot matrix.

e Can display standard ASCII characters or use extended character sets of symbols
from different languages.
Can be used to display up to 8 user-defined special characters.
Can control the cursor in a variety of ways.

Upon start-up, the HD44780 has no idea what it's connected to, on either side: It doesn’t
know whether it’s on a 4-bit or 8-bit bus on the micro side, and it doesn’t know what LCD
it's connected to on the device side, so it doesn’t know whether to produce 5 x 8 or 5 x 10
characters, or how many rows and characters per row it should be producing. You are
responsible for telling it everything it needs to know, and you can only do that by
communicating with it through the 9512X.

The HD44780-controlled LCD on the 9S12X Development Kit

If you check out the schematic for your development kit, you’'ll discover the following set of
interconnections between the 9512X and the HD44780.

Port H is used to create an eight-bit data bus, using PHO through PH7 to map to b0 through
b7, respectively. Port K is used for the address line and the two control lines:

PK2 => RS (internal address select)
PK1 =>R/W
PKO => Enable (active HIGH)

Operation

The LCD controller is able to read instructions and data. The device uses a separate
address line (RS for Register Select) to differentiate between the two. Address 0 accesses
the Instruction Register (IR) and provides control of the device. Address 1 accesses the
Data Register (DR) and provides information to and from the device.

| NCP1503 Topic 3 Page 71 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

As previously mentioned, the HC44780 LCD Controller is a microcontroller designed to drive
a number of different LCD displays. In our application, it needs to drive a

4-line x 20-character display, with characters built using a 5 x 8 matrix. The 9512X
Development Kit is also designed for operation using the 8-bit interface described above.

Inside the controller, the display is actually two lines of 40 characters per line, each in a
unigue memory location. On our 4-line display, the first “line” of 40 characters actually
appears on lines 1 and 3, and the second “line” appears on lines 2 and 4.

The addresses for the various character locations are as follows:

Line on screen | Address (decimal) | Address (hexadecimal)
First 0 to 19 $00 to $13
Second 64 to 83 $40 to $53
Third 20 to 39 $14 to $27
Fourth 84 to 103 $54 to $67

Note that the display memory addresses for the lower “line” have bit 6 turned on, which
may be useful if you want to switch between lines. The display memory addresses from
$28 to $3F (40 to 63) are not to be used, and may be mirrors of other display address
locations, resulting in unpredictable behaviour.

You may write instructions to the LCD to shift the display position. This means something
different for different displays — on a two-line display, you can bring “hidden” characters in
from the part of the internal line that are outside of the window. On our four-line display,
the characters roll between lines 1 and 3, and between lines 2 and 4, which isn’t usually
desirable.

The LCD features a cursor. The cursor is configurable for appearance and behavior. The
cursor is usually set to automatically advance to the next location after a display write (i.e.
to the right of the previous character), but you may change this.

The LCD internally keeps track of the display data address (i.e. the character location in the
display, also known as DDRAM). When you write display data to the device, it goes into the
memory location specified by the current display data address. The controller may be
configured to increase or decrease the display data address after a write (i.e. move right or
move left). The display may also be set to shift after a write, providing a scrolling effect -
again, either to the right or to the left. With the four-line display, this means switching to
the alternate line when the DDRAM address gets to the end (or beginning) of the addresses
for the current visible line — again, probably not what you were hoping for.

In this course, you're expected to have and use the functions shown in the following header
file:

s Hitachi 44780 initialization and comnmands
ssProcessor: MC9S12EDPS12

soCry=tal: 16 HH=

S<by P Ross Taylor

~<<May 2015

wvoid LCD_Tnit{wvaid): s78-hit. Z-line. Gx8 chars. disp on. curs on. hlink off. inc curs mode. no shift, clear. home
void LCD Ctrl{unsigned char):

un=zigned char LCD Busy(wvoid):

wold LCD Char{unsigned char):

wvoid LCD Addr{unsigned char); #<raw LCD DDREAM address — reguires knowledge of device

wvoid LCD Pos{unsigned char.unsigned char): -~ Row and Column., zero based: out of range wvaluss go to hone location

wvoid LCD_String(char *): ssrequires a HILL-terminated string of ASCIT characters in main progran

Unfortunately, the _Init routine requires _Ctrl and _Busy, which complicates things. Your
instructor may also ask you to develop functions to generate special characters later.

| NCP1503 Topic 3 Page 72 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

HD44780 Instructions

In the LCD instructions, the first bit that’s set (HIGH) in the instruction byte determines the
group of instructions to choose from. These instructions are found in the data sheet for the

HD44780, for which a link has been provided in Moodle, and are shown below:

HITACHI HD44780U
Table 6 Instructions
Execution Time
4 Seis (max) (when f,, or
Instruction RS R/W| DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO Description fosc I8 270 kHz)
Clear 0 0 jo o 0 0 o0 0O 0 1 Clears entire display and
display sets DDRAM address 0 in
address counter.
Retum 0 0 jo o 0 0 o0 0O 1 —  Sets DDRAM address 0in 152 ms
home address counter. Also
shifle 10 origial posibon
to ion.
DORAM conlents remain
unchanged.
Entry 1} 0 1] 0 0 0 0 1 i s Sels cursor move direction 37 pus
mode set and specifies display shift.
These operations are
performed durng data write
and read.
Display 0o o Jo 0 0 0 1 D € B Selsentedsplay (D) onoff, 37 us
onloff cursor onfoff (C), and
control blinking of cursor ition
crnr:gar (B). pow
gm:v oo 0 0 1] 1] 0 1 SC RL — — :l_':;lns u“;hwam shifts 37 us
ay without changing
shi; DDRAM contents.
Function 0 0 1] [1] 1 DL N F — — Seats interface data length 37 us
set (DL), number of display lines
(N). and character font (F).
Set 0 0 1] 1 ACG ACG ACG ACG ACG ACG Sels CGRAM address. 37 us
CGRAM CGRAM data is sent and
address received afler this setting.
Sel 0 0 1 ADD ADD ADD ADD ADD ADD ADD Sets DDRAM address. 37 ps
DDRAM DDRAM data is sent and
address received after this setting.
Readbusy 0 1 BF AC AC AC AC AC AC AC Reads busy flag (BF) Ops
flag & indicating internal operation
address s being and
reads ress counter
contents.
Write data 1 0 | Write data Writes data into DDRAM or 37 us
1o CG or CGRAM. lapo = 4 ps*
DDRAM
Read data 1 1 Read data Reads data from DDRAM or 37 us
from CG or CGRAM. tooo = 4 ps*
DDRAM
D =1: Increment DDRAM: Display data RAM  Execution time
D =0: Decrement CGRAM: Character generator changes when
S =1: Accompanies display shift RAM frequency changes
SIC =1: Display shift ACG: CGRAM address Example:
SIC =0: Cursor move ADD: DDRAM address When {;, or fosc I8
R/IL =1: Shift to the right (corresponds to cursor 250 kHz,
RIL =0: Shift lothe left address) 37 270 _ 45
DL =1: Bbits,DL=0: 4 bits AC: Address counter used for ' !5 35g = *V U8
N =1 2lnes, N=0 1line both DD and CGRAM
F =1 5x10dots, F=0: 5x8dols addresses
BF =1: Internally operating
BF =0: Instructions acceptable
Note: — indicates no effect.

*  After execution of the CGRAM/DDRAM data write or read instruction, the RAM address counter
is Incremented or decremented by 1. The RAM address counter is updated after the busy flag
turns off. In Figure 10, 1, is the time elapsed after the busy flag turns off until the address
counter is updated.

| NCP1503 Topic 3 Page 73 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The default condition of the controller is as follows: 8-bit mode, 1-line display, 5 x 8 matrix,
display off, cursor off, blink mode off, increment cursor position (move to the right), with
shifting turned off (display doesn’t scroll). We need to initialize the controller to make it
match our hardware.

LCD Controller Initialization

Timing is critical in all communications with this controller, and particularly so in the
initialization of the device. To begin with, the Busy flag is not active until a particular
sequence of commands has been executed. In addition, data needs to be present 60 ns
prior to an Enable pulse, and the Enable pulse must be HIGH for at least 500 ns followed by
at least 500 ns LOW. Due to internal activity in the HC44780U, at least 40 ms must be
allowed following power-up. After the first command is sent to the controller, at least 4.1
ms must be allowed before the second command is sent, then 100 us must be allowed
before the third command is sent. After the third command, the Busy flag becomes
available, and can thereafter be used to monitor the controller’s activity.

oYy
\_ Poweron )

|

\
\

Wait for more than 15 ms |'r. Wait for more than 40 ms |
after Ve risesto 4.5V | after Vegrises to 2.7 V ;.'
RS RAWDBET DB6 DBS DB4 DB3DE2 DB1DB0 | BF cannot be checked before this instruction.

00 0 0 1 1 = == = =

Wait for more than 4.1 ms

RS RAVDBT DB6 DB5 DB4 DB3DB2 DB1DB0 BF cannot be checked before this instruction.
00 0D 0 1 1 = = = =

Wait for more than 100 ps

RS RWDB7 DB6 DBS DB4 DB3DB2 DB1DB0 { | BF cannot be checked before this instruction.

Function set (Interface is 8 bits long.)

Function set (Interface is 8 bits long.)

o o0 o o0 1 1 = = = *

Function set (Interface is 8 bits long.)

BF can be checked after the following instructions.
When BF is not checked, the waiting time between
instructions is longer than the execution instuction
time. (See Table 6.)

Function set (Interface is 8 bits long. Specify the

RS RAWDBT7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 number of display lines and character font.)
0 0 0 0 1 1 N F * * The number of displa’y lines and character font
0 0 0 0 0 0 1 0 0 o cannot be changed after this point.
0O 0 0 0 0 O 0O 0O 0 1 Display off
0 0 0 0O 0O O O 1 1D S Display clear
l Entry mode set

Initialization ends

Figure 23 8-Bit Interface

HITACHI
45

| NCP1503 Topic 3 Page 74 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

LCD_Init

For this discussion, the initialization flowchart from the previous page will be used as a
template for the code developed.

Before we can do anything at all, we need to set up our simple parallel bus interface
between the microcontroller and the LCD controller. Checking back to the schematic for our
board, we see that Port H (PTH) is being used as the eight-bit data bus and the lower three
bits of Port K (PORTK) are being used as the control lines:

PORTK bits:
7 - X
6 - X
5-x
4 - X
3-X

2 — RS (register select: LOW for Control, HIGH for Data)
1 - R/W (HIGH for READ, LOW for WRITE)
0 - EN (chip enable: HIGH for Enable)

Most of the time, we will be writing to the LCD controller: we will write control bytes to it to
tell it how we want it to look and respond; we will write data bytes to it, primarily providing
it with the ASCII codes we want to display on the screen. So, it makes sense for us to set
the default condition for the data bus, PTH, as outputs for all eight bits using the Port H
Data Direction Register (DDRH).

Although it doesn’t really matter what’s on the bus when we enable it, good programming
practice suggests we should write something innocuous to the bus, so clearing all eight bits
before we change the pins to outputs is a good idea.

Since we're only using three of the eight bits in PORTK, we should leave the other five bits
alone in case there’s some other possible use for those bits. So, instead of writing an entire
byte to the Port K Data Direction Register (DDRK), we’ll OR the three bits we need with 1s
to make them into outputs, while leaving the other five alone.

Before we do that, however, we should set the bits in PORTK to the condition we want them
to be in when the port pins are enabled. The resting state that makes sense for us is to
have all three controls lines LOW - RS set for control, R/W set to Write, and EN low so that
the chip is not being addressed. The code below also shows the beginning of the LCD_Lib.c
file that you will be building to match the header file shown previously.

swHitachi 44780 initialization and commands
ssProcessor:  HCI512XDPS1Z2

SsCryv=tal: 16 HMHz

<~by P Ros= Taylor

soHay 2015

#include <hidef h:
#include "derivative. h”
#include "LCD Libk . h"

wolid LCD Init{void}
{

PTH =0bOo0ooonoon:;

DDEH  =0b11111111; ~~data bus as outputs for write
PORTK&=0b11111000; .~ rpreset RS low, E-W low, EN low
DDRE |=0bO000O0111; ~“actiwate thres control lines

| NCP1503 Topic 3 Page 75 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Ty
\_ Power on y,

Wait for more than 15 ms
after Ve risesto 4.5V
T

Since we don’t know how long it might take for the power supply to reach 4.5 V, we'll make
the wait time quite a bit longer than 15 ms. If we do two loops of a full 16-bit countdown
using the three clock cycle Assembly instruction DBNE, we’ll have 49.152 ms, which should
be ample:

2 x 65,536 x 3 cycles x 125 ns/cycle = 49.152 ms

To ensure that we get full control of the microcontroller at this point, we need to do this
part of the code in S12XCPU Assembly Language. This is done by putting the keyword
“asm” in front of the Assembly code, which is now followed by a semicolon since it’s in C.

azm LDD #0; Sepneed a 4915 ms delay
azm DBHE D, =: So24 576 m= delay
a=m DEHE D, = S0 twice

Next step in the flowchart:

I
RS RANDB7 DB6 DB5 DB4 DB3DB2 DB1DB0
o oo o0 1 1 = == %= =

Wait for more than 4.1 ms

Note the position of the first HIGH in the byte they intend us to send: This is a “function”
control byte. At this point, the controller will only respond to the contents of DB5, which is
SET, meaning that we're going to be using an eight-bit bus. If you look at the flowchart,
we’ll be sending a “function” control byte four times in a row, with the other settings
included the fourth time through. Since these are “don’t care” for the first three times, it's
ok for us to make them what we want them to be the last time through. So, we'll put the
final version of the command on the bus, then just write it four times with the appropriate
delays in between. Here’s the first one (indicated in the flowchart snippet above). Note
that we manipulate the control lines to do what we want, then return them to their resting
state. This is sometimes called “strobing” the control lines, most particularly the Enable.

FTH =0b00111000;

[l (don't care)d

[l idon't care)

|| font: G matriz (LOW)

| line=: 2 (HIGH)
data: 8-bit (HIGH)
function ==t of commands

*.
PORTE | =0b000O00O00L; ~~write a control byte
FORTE&=0b11111000; ~rresting =state
S [ 1] EN (Enable: HIGH to enable)
| R-W (LOW for WEITE)
| FS (Fegizter Select: LOW for control)
* .
asm LDD #11000:; Sepeed 40125 ms delay
azm DBEHE D, %

Check the timing: 11,000 x 3 cycles x 125 ns/cycle = 4.125 ms

| NCP1503 Topic 3 Page 76 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Now for the second attempt: Since the control byte is still sitting on the bus, all we need to
do is strobe the control lines again, then wait the required time.
|

RS R/WDB7 DB6 DBS DB4 DB3 DB2 DB1DB0
D0 0D 0O 1 1 * == = =+

Wait for more than 100 ps

PORTE | =0BO00000OQ0L: ~+RS low, BV low., EN high to write a control
PORTE&=0B11111000; ~~resting state

as=m LDD #:267; Seneed 100 us delay
aszm DENE D, *:

Check the timing: 267 x 3 cycles x 125 ns/cycle = 100 ps

Third time from the flowchart. Oddly, for this, no delay time is indicated. However, Our
microcontroller is faster than the LCD controller, so we’ll insert a delay, anyway. We've
already got a 100 ps delay calculated, so we'll use it.

RS RAWDB7 DB6 DBS DB4 DB3 DB2 DB1DB0
00 0 0 1 1 *= =+ =+ =

FORTE |=0b0O00O0Q0OO0L; ~~RS low., E-W low. EN high to write a control
PORTE&=0b11111000; s~ resting state

a=zm LDD #¥267; Semneed 100 us delaw
a=zmn DENE D, =

According to the notes, the HD44780 LCD controller should be working properly, and its
“Busy Flag” should be available for further instructions. And, although it seems from
experience that the HD44780 has been properly configured at this point, the flowchart says
“do it again”, so who are we to argue?

RS RWDB7 DB6 DB5 DB4 DB3 DB2 DB1DB0
D00 0O 1 1 N F = =

This time, we'll rely on the busy flag, and will use the LCD_Ctrl/() command. Oh, wait a
second, we haven’t written that yet! We’ll code in the function call, then come back to
writing it later.

LCD Ctr1(0b001110007); Sozane asz above, but using LCD Ctrl (Busy iz actiwve)

| NCP1503 Topic 3 Page 77 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Finally, we'll fine-tune the settings. The settings in the flowchart don’t match the operation
your instructors prefer, so you’ll notice differences in the code that follows. For one, the
flowchart turns the display off, which seems counterproductive after all that work!

0 0 O 1 0 0 O
0 0 00 0 0 0 1
0 0 0 0 0O 1 1UD S

Initialization ends

Blink: LOW for off

Cursor: HIGH for on

Di=play: HIGH for on
Display Control commands

LCD_Ctrl(DbDDDDT}T?); ssdisplay controls
[
[
|

*

LCD Ctrl{0ObOooooonly; ssolear display, home position
LD Ctrl{0bOo0oooliny: somode controls
S* N Shift: LOW for no display shift

| IncsDec: HIGH for increment (to the left)
| Entrv Mode commands

LCD_Ctrl

The LCD_Ctrl routine passes an 8-bit control byte, which it sends out, once the “Busy” flag
is cleared, using RS HIGH for control, R/W LOW for WRITE, and Enable strobed HIGH then
LOW. That's a pretty simple routine, given what you’ve had to do in the LCD_Init routine.
However, it relies on yet one more function, LCD_Busy, which we will also have to write.

woid LCD Ctrl{un=igned char cCommand)

while (LCD Busy({)!=0%; +swait for the Busy Flag to be CLEARED

FTH=cCommand ; ssput control byte on the bus
PORTE | =0b0000000L ; <<R5 low, BsW low, EN high to write a control
FORTE&=0011111000; Srresting state

}

Make sure you understand how LCD_Ctrl works: you’ll need to use a very similar technique
for sending a character (data byte) to the LCD later. By the way, we could have used
(while(LCD_Busy()); to wait for the Busy Flag to be CLEARED.

We still need LCD_Busy, which checks to see if the controller is available for communication.

LCD_Busy

The LCD_Busy routine must query the LCD controller for the info in its Status Register which
contains the Busy flag and seven bits representing the cursor’s current location. (We don’t
care about the info about the cursor’s location, so we'll ignore it and just look at the flag,
which is the most significant bit). Getting this information from the LCD controller can be
done by executing a READ of the internal register, which becomes the Status Register when
read from, instead of the Control Register we've been writing to.

This involves switching the direction of the data bits to inputs. The routine we're going to
write is a non-blocking routine, allowing the user to write programs that continue on until
the LCD controller is free. In the LCD_Ctrl routine above, we block until the controller is
free anyway, as indicated by a non-zero return from LCD_Busy. However, the LCD_Busy
routine as written allows us the option of moving on if we want to.

Once we've read the status register, we need to switch the port back to outputs.

| NCP1503 Topic 3 Page 78 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

unsigned char LCD Busvi{woid)
{

unsigned char cBusy:
DDEH = 0bO0O0OODDODDO; s~data bus as inputs for read

S EN (Enable: HIGH to enable)

RE-T {(HIGH for READ)

PORTE | =0b0000001L ;
I
| FS (Fegister Select: LOW for Status)

*
PORTE&=0b11111000; ssresting state

cBusy=PTH&O0DB10000000 ; ssBusy Flag i= the HSE of the Status Register
DDFH = 0b11111111; <+~data bu=s returned to output=s for next write

return cBusy:

b
As always, make sure you understand how this routine works before you start using it.

LCD_Char

Up to this point, all we've done is get the LCD controller set up and ready to work for us.
The LCD is now sitting there doing nothing until we send it ASCII characters to display.
LCD_Char() is the name of the function we’ll create to carry out this task.

The only differences between LCD_Char() and LCD_Ctrl() are the type of data sent and the
internal register it's sent to.

e The data sent will be a single ASCII character. So, if you want to send a number,
you’ll have to do a Hex to ASCII conversion first.

e The target in the LCD controller is the Data Register, not the Control Register. That
means that you will need to SET RS when you strobe the control lines.

That should be enough information for you to create and test LCD_Char(). If you need
further help, your instructor can provide it.

LCD_String

Quite often, you’ll want to send multiple characters to the LCD (or to other peripherals or
equipment that’s looking for ASCII characters). The best way to send longer strings of
characters is by using a null-terminated string of ASCII characters. The LCD_String
function you will be creating can handle strings of any length (up to the length of a row on
the LCD display, or 20 characters), since it’s not looking for a particular length, but is
expecting the string to end with the NULL character (ASCII code 0). The routine transmits
each character, then checks to see if the character was a NULL. Ifitis a NULL, program
execution exits the function.

You will be using LCD_Char() as the working block of LCD_String(*), a routine that sends a
null-terminated string, from a memory location specified in your program, to the LCD.

In ANSI C, the starting point of a string or array of bytes is referenced using pointers. The
following screen clip of the author’s LCD_String function shows how to get the contents of

an address which is being pointed to using an asterisk (*). cString is the label of the string
you want to transmit, and is actually initially the address of the first character in the string.

woid LCD String(char * cString)

while{*cStringl=0) S#watch for HULL terminator
LCD Char(*cString++); ~=end next character

| NCP1503 Topic 3 Page 79 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Take some time to make sense of how the pointer is being used in the LCD_String()
function. In this course, there won’t be much need to learn more about pointers than you
see in this example. If you need to know more, the Internet is an endless source of wisdom
and hilarity regarding pointers, along with the dereferencing “*” operator and the “&”
address operator used for pointer management.

LCD_Addr

This is intended to be a simple way to locate a particular position on the LCD display. All it
does is to take the address provided, convert it into a DDRAM Address control byte, and
send that command to the LCD controller. The cursor will move to that location, ready for
you to send a character to that spot. Here's the code for this function:

woid LCD_Addr{un=signed char chAddr)

1 Soamsumnes programmer understands raw addresses
ciddr|=0b10000000; ~radd command bit for "Set DDRAH Address"
LCD _Ctrl{chAddr):

I

Compare back to the table of instructions for the HD44780 controller to see why the MSB
needed to be changed to 1 before sending the address to the control register.

LCD_Pos

In order to use LCD_Addr effectively, the programmer needs to know what the valid
addresses are and how they are arranged on the display. The following table appeared
earlier in this document, but has been duplicated here for convenience:

Line on screen Address (decimal) Address (hexadecimal)
First 0to 19 $00 to $13
Second 64 to 83 $40 to $53
Third 20 to 39 $14 to $27
Fourth 84 to 103 $54 to $67

LCD_Pos() is intended to simplify the process of moving to a particular location on the
display. The basic idea is to pass two numbers to the function: a ROW and a COLUMN, and
let the function generate the correct address to send to the controller using LCD_Addr().

For consistency between classes, the instructors for this course have settled on zero-based
row and column addressing, so the available rows are 0 through 3 and the available
columns are 0 through 19. Part of the necessary code for this routine is shown below; you
are expected to complete the function so that it works satisfactorily. This code
demonstrates an application for the switch->case operation in C.

| NCP1503

Topic 3

Page 80 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

..!{rrélid LCD Po={un=zigned char cREow, unsigned char cCol) -""'-a.,.,‘

) srzero—bazed for both row and column

) if (cRow:3 || cCol:19) ~~display invalid inputs at home location ™,
Vo
| LCD AddriQy:

\ 3 j
| el=s !
\ 5 ;,f’
! switch (cRow) //

| case 0: sefirst row i= 0 to 19 e
\ LCD Addr({cCol); ~
\ breal; _(,,-"
\ casze 1: sozecond row is 64 to B3 _____.-”"’..
\ LCD Addr{cCol+64d}: ——
\ breal: T
AN case 2 Aothird 1_“_n;u-r--""-'-’

. LCD_Addr{cCol+20%—"

At this point, you will have at your disposal all of the LCD functions deemed necessary by all
of your instructors. Your instructor, however, may want you to generate a collection of
other functions to enhance your use of the LCD on your board. Some of these may simply
be LCD_Ctrl() calls that do things like turn the cursor on or off, blink on or off, clear the
display, etc. without requiring you to constantly look up the instructions on the table.

Character Generation

One set of optional functions you can try out allows you to access the LCD’s capacity for
generating characters other than the ones in the ASCII set contained in its memory. If your
instructor deems this extraneous, you can skip the next few pages.

Your LCD is able to display 8 user-defined characters, which you design pixel by pixel within
the 5 x 8 pixel matrix. The memory in the device that holds the pixel pattern is known as
character generator RAM (CGRAM).

These user-defined characters will take the place of the first eight ASCII characters. In the
ASCII table, these are non-printable characters, so Hitachi engineers decided to re-define
them as the spaces available for your custom characters. So, to access the characters you
generate, simply reference ASCII characters 0x00 to 0x07.

To get your user-defined character patterns into the device, you must program them, row
by row, for each character. The device must also be instructed to accept CG data. The “Set
CGRAM Address” instruction does this. Here it is from the data sheet’s table of instructions:

Set 0 o i 1 ACG ACG ACG ACG ACG ACG Sels CGRAM address 37 ps
CGRAM CGRAM data is senl and
podress received after this setting

This instruction is written to the LCD Instruction Register and tells the LCD that all
subsequent data written to the Data Register will be CG (Character Generation) data. The
instruction includes the address of CGRAM to start at for a given character. Only 6 bits are
required, since only 64 bytes are need to represent the eight 5 x 8 characters - each row of
pixels in a character requires one byte, so each of the eight characters requires eight bytes.

The top of ASCII character $00 is at CG address $00, and extends to address $07. Note
that the first 3 bits (most significant) are ignored, as the characters are only 5 pixels wide.

In the current version of the data sheet, Table 5 shows you how to build the bitmap for
special characters in CGRAM, as shown on the next page:

| NCP1503 Topic 3 Page 81 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

HD44780U

Table § Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character
Patterns (CGRAM Data)

For 5 X 8 dot character patterns

Character Codes Character Patterns
(DDRAM data) CGRAM Address (CGRAM data)
76543210 543210 76543210
High Low High Low High Low
10 0 0 + = =111 1]o]|]
00 1 A 1/o0 o of1
EU 1o 110 0 011 Character
. 1011 1 11 10| 1 patem (1)
000DO0D*000 0005100 1ol1]0 o
]
110 1 1|0 ol1]o
1110 v [1]o 0 o[1]
f11 1 * * *.0 0 0 0 0] Cursorposition
10 0 O + = = 1[0 0 o]1])
001 b tol1]of1[o]
10 10 11 1 11 Charact
daracler
o 11 0 0]1[o 0
0D 00DO0O®=*00 1 00 11 I—pattern(Q)
110 0 19 791 1
]
101 0 0]1fo o
1110 ¢ io o|1fo of)
P11 *# + +10 0 0 0 0| Cursorposition
:U U U * = *:
I 00 1 A i
__::::_—:ZI::— — __i___ i |
- L | [,
! ———
0000 * 111 11 1] !
{100 !
‘10 1 i
] ]
110 Y
111 = e e

CG data may be programmed at any time, including when characters for that type are
currently being displayed. Some unusual animation effects may be generated by re-
programming the characters that are currently being displayed.

Once the programming of CG data is complete, the device should be set back to display
data (DDRAM). The “Set DDRAM Address” instruction does this. Go to DDRAM address 0,
the home position on the display, as a good place to start. This instruction sets the LCD to
accept DD information from the DR for all subsequent writes.

Remember that you can create up to eight custom characters. The following two functions
can be used to create a single character at a given location or to create all eight available
characters from a table of 64 row-definition bytes defining all eight characters.
e LCD CharGen () is a routine that builds a single custom character for the ASCII code
passed to it as a parameter (0x00 to 0x07), with the character definition pattern
beginning at a location pointed to as a parameter.

e LCD CharGen8() is a routine that builds eight custom characters, with their
definition patterns beginning at a location pointed to as a parameter. (If you don't
need all eight characters, just fill the unused row bytes with nulls to produce blank
characters.) This function doesn’t need an ASCII code, since it fills 0x00 to 0x07.

| NCP1503 Topic 3 Page 82 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

LCD_CharGen Example

AREEEEREEEEEEX AR XA EEREEEEA AR EREEEA R XXX ER XA ERE X XEEREERER

* Wariahles=
-
char cHameString[l4] = "P Ro=ss Tawvlor":
char ASCII_1[8] =
{
0boooooioo,
obooooi111o,
0bOOO11011.
0boOoO1l0001,
0bOOO11011,
0bo0oo11011.
0bo0OO1110,
0bOoOoo0100
F:
9 36363636 3636 36 36 36363636 36 36 36 36 36 36363636 36 36 36 36 36363636 36 36 36 36 36363636 36 36 36 36 36 36363636 36 36 36 36 36363636 3 36 36 36 363636 XK
* Lookups=
-
woid main{void) S malin entry point

!
_DISAELE COF({):

AREEEEREEEEEEX AR XA EEREEEEA AR EREEEA R XXX ER XA ERE X XEEREERER

* Initializations
-

LCD_Init():
LCD_Ctrl({0b0O0OOO1100Y Ssiiursor off

LCD CharGen(l,ASCITI_1): s Genserate a =ingle ASCII Char as 0x01

for (;:3 ssendless program loop

s

* Hain Frogram Code
36 36 363636 36 36 36 36 36 36363636 36 36 36 36 36 36363636 36 36 36 36 36363636 36 36 36 36 36363636 36 36 36 36 36 36363636 3636 36 36 363636 36 36 36 36 36 3636363 W EH

LCD Po=(2.5): SRow 3. Column &

LCD String{cHameString): ssDisplay nane

LCD Po=(0,107; SrRow 1, Column 11

LCD _Char{l): swDizplay custom character
HALT: <+Halt program in endles= loop

1

Notice that LCD_CharGen() is run only once, in the initializations. That’s where ASCII
character 0x01 is created. To use this character, we simply display ASCII character 0x01
by using our LCD_Char() function. The results are seen below. Notice how the pattern in
the first row relates to the pixel map shown in the Variables space above.

\

‘~P RossTas1or4

| NCP1503 Topic 3 Page 83 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

LCD_CharGen8 Example

Here’s the author’s version of LCD_CharGen8(). If you're an enterprising type, you will
probably realize that you don’t need to modify this much to make LCD_CharGen(). The
eight-character version writes 64 bytes into CGRAM, starting with address 0x00 and going
to address Ox3F.

woid LCD Charizent(char *cDef=s)

{
un=zigned char cline;
LCD_Ctrxli0bolo00000% soztart of ASCII(O0)
for{cline=0:cline<bd cline++)
LCD Char(*®cDefs++)
LCD Cetrli0blo0Qoooosy; s<baclk to DDREAM, home location
h

To keep the entire useful code together, the following images have been shrunk probably
beyond your ability to read them on paper. However, you can zoom in on the electronic
version to see more detail.

* Variables
unsigned char cCount;
char ASCII Oto7[64] =
{ URO000B000 #7A5CIT char O A ASCTT char 4
- ObOooO0OOD,
obanonoooo. obooonooono, woid maindvoid) S main entry point
SEptsEe {
- ObO0DO11111,
gggggggggg DBOODILILL, _DISAELE_COF();
. ObO0OOL1111. /
i S T
. . -
#SBECTIT char 1 s#ASCIT char &
obOOOOOOOO, obOOOOOOOO, ICD_Init():
gggggggggg BEBBSEEEEE LD Ctrl(0bOOOOL100Y; SoCureor of £
0b000000ND, gggggﬂﬂi LCD_CharGenB (ASCIT_0ta?): //Generate all eight custom characters
obOooooooag, .
obOoOoooooo, 0b00OLL111, for (::) srendless program loop
0bO0011111, 0bOo01111lL, 1
0b0O0011111, 0b0O0O0O11111, 45CTT oh . P
o ey char * Hain Program Code
hoononang | AocLt char 2 0b000D0DOD, -
000000000, OBOOOLLLLL, .
0bO0OO11111, LCD Po=s(0,0); s-Home position
obOooooooag, 0RO0OL1111 —
0bO0oooooog. : . .
oEOOOO0Oan. gggggiiiii for(cCount=0;cCount <8 cCount++)
Ubanoiilll, 0b00OLL111, LCD_Char({cCount); #~+Display chars in order
0b00D11111. 000011111,
0b00011111. ##&5CIT char 7 LCD Char(3); #+Display three randomly chosen
#SBECTIT char 3 0b0OD11111, LCD Char(§)
0LO00O0000, 0b0OO11111, TCD Char(2).
oboooooooo, 0b0o011111, LCD _Char(0=dl): #/Same procedurs for normal ASCIT
0LO0O0N0ND. 0500011111, LCD Char( '&'): s/hlternate way to display ASCIT
0bO0oooooo, 0bOOO11111.
obO0OO11111, Obooo11111, HALT: #Halt program in endless loop
0b00011111. 0b0o011111, )
0bO0011111, ObODOL1111 13
0b00011111. 3 T

Notice again that LCD_CharGen8() is only run once in the initializations, and creates all
eight custom ASCII characters: 0x00 through 0x07. Once created, these characters can be
displayed in the same way as any of the other pre-defined ASCII characters.

WEUAR SEESS NSRS
s A

|l|||lllllllllllllllllllllllll I"ll l.ll.

| NCP1503 Topic 3 Page 84 |




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

ASCII Code Manipulation
The LCD display and the Serial Communication Interface (still to come) work primarily with

ASCII values. The following table shows the standard 7-bit ASCII codes.

ASCII Table
Char | Dec Hex | Char | Dec Hex | Char | Dec Hex | Char | Dec Hex
(NUL) 0 0x00 | (SP) 32 0x20 @ 64 0x40 96 0x60
(SOH) 1 0x01 ! 33 0x21 A 65 0x41 a 97 0x61
(STX) 2 0x02 " 34 0x22 B 66 0x42 b 98 0x62
(ETX) 3 0x03 # 35 0x23 C 67 0x43 c 99 0x63
(EOT) 4 0x04 S 36 0x24 D 68 0x44 d 100 | Ox64
(ENQ) 5 0x05 % 37 0x25 E 69 0x45 e 101 | Ox65
(ACK) 6 0x06 & 38 0x26 F 70 0x46 f 102 | Ox66
(BEL) 7 0x07 ' 39 0x27 G 71 0x47 g 103 | 0x67
(BS) 8 0x08 ( 40 0x28 H 72 0x48 h 104 | Ox68
(HT) 9 0x09 ) 41 0x29 I 73 0x49 i 105 | 0x69
(NL) 10 0x0a * 42 0x2a J 74 Ox4a i 106 | Oxb6a
(VT) | 11 |ox0b | + 43 | ox2b | K 75 | Ox4b | k 107 | Ox6b
(NP) 12 0x0c , 44 0x2c L 76 Ox4c I 108 | Ox6¢
(CR) 13 0x0d - 45 0x2d M 77 0x4d m 109 | Ox6d
(SO) 14 0x0e . 46 0x2e N 78 Ox4de n 110 | Ox6e
(S 15 oxof / 47 ox2f o] 79 Ox4af o 111 | Ox6f
(DLE) 16 0x10 0 48 0x30 P 80 0x50 p 112 | 0x70
(DC1) 17 0x11 1 49 0x31 Q 81 0x51 q 113 | 0x71
(DC2) 18 0x12 2 50 0x32 R 82 0x52 r 114 | 0x72
(DC3) 19 0x13 3 51 0x33 S 83 0x53 s 115 | 0x73
(DC4) 20 0x14 4 52 0x34 T 84 0x54 t 116 0x74
(NAK) 21 0x15 5 53 0x35 U 85 0x55 u 117 0x75
(SYN) 22 0x16 6 54 0x36 v 86 0x56 v 118 | 0x76
(ETB) 23 0x17 7 55 0x37 W 87 0x57 w 119 0x77
(CAN) | 24 0x18 8 56 0x38 X 88 0x58 X 120 | 0x78
(EM) 25 0x19 9 57 0x39 Y 89 0x59 y 121 | 0x79
(SUB) 26 Oxla 58 0x3a z 90 0x5a z 122 | Ox7a
(ESC) 27 0x1b ; 59 0x3b [ 91 0x5b { 123 | 0x7b
(FS) 28 Ox1c < 60 0x3c \ 92 0x5c¢ | 124 | Ox7c
(GS) 29 Ox1d = 61 0x3d | 93 0x5d } 125 | Ox7d
(RS) 30 Oxle > 62 0x3e A 94 0x5e ~ 126 | Ox7e
(US) 31 Ox1f ? 63 0x3f _ 95 Ox5f | (DEL) | 127 | Ox7f
| NCP1503 Topic 3 Page 85 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

Some of these characters (everything less than $20) have special meaning - BD, LF, FF,
CR, BEL, etc. Eight-bit ASCII includes another 128 characters ($80 to $FF) which are called
“extended ASCII” and are not standardized. Trying them out will produce different results
on different displays and terminals, so you're welcome to play around with them if you have
a fairly high tolerance for frustration. For the Hitachi 44780 display, the following table

from the datasheet shows the characters that can be displayed:

HD44780U
Table4  Correspondence between Character Codes and Character Patterns (ROM Code: A00)
:Lnonnﬂ’?" EEIF.--F' _'EE.EF'
o001 | (2) !lFIE-EI':I n?l"=.|.'li|-E-ll:'|
o] "ZIBIRIBIFL | | T
waon| 0| || I|CSC[S 1| TE|S |ea
won| o | |G D T ]| T '-.Il"1"'|.-|ﬂ
oox0101 | (6) -.":SEI_IE'L-' ':'|'.'-|'.'|.'5L.I
oo BEFIF L [ (TR T s
won| o |7 [P|GWDw] | |7[F[FDq(n
woo| o || € B H# ] 1 3F =
woot| @] | ADT N1 I -
oo @ ||| B | T[T [ m o 1 ﬂj F
o @] |5 KL [k A T E0* R
oo @] | |4 [L[FI L] il 3
wart| @] | =|=(M] M| F Bl I A
oot 10 | (7) RS Elhdh ol
want | @| | 20| _ ||+ R s II:

Mote:  The user can specify any pattem for character-generator RAM.

The note at the bottom reiterates the fact that you can create your own characters for

ASCII codes 0 through 7. Apparently, they can also be accessed using ASCII codes
8 through F, but they would be the same characters as 0 through 7.

| NCP1503

Topic 3

Page 86 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Upper and Lower Case ASCII Codes

Look at the table of ASCII characters to see what's different between uppercase and
lowercase letters. (Hint: write them out as binary representations.) You should discover
that there is only one bit different. This makes manipulation of uppercase and lowercase
values pretty simple. The only thing you need to watch out for is that you only want to
change this bit if the value is a valid alphabet character — otherwise, you could be seriously
messing up a number or punctuation mark!

In your Misc_Lib.h header file, you'll notice that prototypes have been included for two
routines designed to handle changing the case of an ASCII character:

e ToUpper()
e TolLower()

Your instructor will want you to have these routines completed and working, not only for the
LCD, but also for subsequent use with dumb terminals attached to an SCI comm port.

Hexadecimal to ASCII conversion

Look back at the table of ASCII characters. Notice that the ASCII character codes for
numeric digits (0123456789) and the hexadecimal extensions (ABCDEF) do not match their
actual value. In other words, if you want to display “7” on a terminal emulator, sending the
ASCII code “7” will make the terminal beep instead. What you need to do is send “$37” in
order to display “7” on the screen. It's a code!

Converting regular digits (0123456789) to ASCII is easy - just add 0x30 to the digit or OR
the digit with 0b00110000.

Converting the hexadecimal values ABCDEF to ASCII is similar, but with a different offset.
For these, you need to add 0x37.

In your Misc_Lib, you will want to write HexToASCII() so that you can convert individual
numeric digits to ASCII code in order to send the results to the LCD or other equipment that
displays ASCII codes.

Also in your Misc_Lib, you will want to write ASCIIToHex() that takes the codes for valid
ASCII codes (0x30 - 0x39 and 0x41 - 0x46) and converts them to real numbers (0 - 9 and
A - F). Again, don't mess with any values outside of these ranges.

Make sure that your function only converts true numerals (0 - 9 and A - For a - f), and
that it can’t be broken if a two-nibble or two-digit value is sent to it. Incidentally, you can
simplify the handling of A - F and a - f by using ToUpper()inside your ASCIIToHex()
routine.

Your ASCIIToHex() function should return 0 if non-valid (i.e. non-numeric) or double-digit
values are passed to it. It will then be up to your handling of the returned value in the
main() program to determine what to do with a returned 0. You may choose to work with
the returned zero, or you may want to set up a trapping routine that determines when zero
represents an invalid response and when it actually means zero.

| NCP1503 Topic 3 Page 87 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The Serial Communications Interface

Your 9S512X chip contains SCI (Serial Communication Interface) modules for asynchronous
serial communications. You will use one of the SCI modules to communicate with a PC
running “terminal emulation” software over a standard RS-232 connection.

Using the PC as a terminal allows you to interact with a color display and a keyboard. This
will bring improved 1I/0 to your programs.

Because you will be reading bytes from and writing bytes to the serial port, the SCI module
acts as a parallel-to-serial and serial-to-parallel converter. There is an external chip on your
microcontroller board that level shifts the signals from the 9512X (TTL levels) to RS-232
levels (typically around £10V).

In asynchronous communications, the transmitter may begin a data send to the receiver at
any time. Once started, a complete block of data (known as a data character) must be
completely transmitted. The delay between data characters may be any length.
Transmission of the individual bits in the data character is driven by a clock. The
transmitter and receiver must use a clock rate that is approximately equal in order to
correctly exchange data. The term “asynchronous” refers to the fact that the clocks in the
two pieces of equipment are independent, and communication can be initiated at any time.

The RS-232C standard for serial communication allows for a wide range of signaling
characteristics. Here are a few of them:

e Transmission rates vary from 75 baud to 115 200 baud (these must be at clearly-
specified speeds only, like 9600, but not 10 000, for example)

e Data can be sent as 7-bit standard ASCII characters, 8-bit extended ASCII

characters, or binary data

Simple error checking, in the form of a Parity Bit, may or may not be activated

The Parity Bit, if present, can be Even, Odd, always 1, or always 0

The minimum rest time (“stop bits”) between data characters can be adjusted

“Handshaking” for setting up and maintaining sessions can be configured or ignored

The 9512X SCI modules are able to send 8-bit or 9-bit data payloads. This provides a fair
bit of flexibility:

e 9-bit mode provides for 9 actual data bits (very rarely used) or 8 data bits and a
parity bit for error checking
e 8-bit mode provides for 8 actual data bits or 7 data bits and a parity bit

Since the 9-bit configurations require us to check two data registers (eight bits in one and
the ninth in another), we’ll restrict our work to one of the 8-bit modes: 8 actual bits with no
parity. The simple error checking made available by the parity bit isn't something we need
to concern ourselves with, as, in the lab, we’ll be within two metres of the computer we're
using as a terminal. If you find yourself in a situation involving greater distance or an
electrically-noisy environment, you might consider enabling and checking parity.

Also, we will be working with the simplest electrical connection possible between our board
and the terminal - three wires only: Ground, Transmit Data, and Receive Data. This
means that we will not be using the bundle of handshaking wires made available in the RS-
232C standard.

Note: When you set up your terminal, select “flow control: none”.

| NCP1503 Topic 3 Page 88 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The data character sent in this configuration will consist of 1 start bit, 8 data bits (sent LSB
first), and 1 stop bit. In terminal language, this is referred to as "8N1” communication - 8
bits, no parity, one stop bit. The start bit signals the start of a data character. The data
bits are the data payload. The stop bit signals the end of the data character and is the
minimum delay required between data characters. With early communication equipment,
the stop bit gave the receiver time to process the received data - this is typically a
non-issue these days. In many pieces of equipment, this wait time can be set to 1 bit
length, 1.5 bit lengths, or 2 bit lengths. The 9S12X’s SCI port only offers 1 bit length -
that’s another thing to remember when you’re setting up your terminal. So, once your SCI
port is set up to match the conditions above, you will see something like the top trace on
the TX pin from the microcontroller, and the bottom trace on the TX pin of the Comm Port.

1T 4.oovs 2 500ve 3 0.0s 200.0sf stop
b
1_|:p — —_—— = = _— = = = _—— === = —

e pmmeetee— mmim mme pmms ommim o eeT s B e e

i A N AR AR R TR WA L] L L] L ] L

-k ESC)— D ) 2%
'’ ESC)— [ 1) 2]

The following shows the formatting and order of bits, as seen at the microcontroller output.

I
= HH
)
= || | L] L] L] iR L o &
5 oo o m s vl w a1 o
= ||| O || o | 0 = I N I S S B I O
e
i o al ol sl JI.
Iyl =] Tyl = = =t = < = < = =
= = = (=] (=] (=] [=] = (=] = (=] (=]
L 4 w W ] L A W W w w ]
— = = = =} w =] ™~ L = @ —
A = A o i ri i el e < o A

Note: The TTL level for a mark (logic 1) is +5 V, and 0 V for a space (logic 0). However,
these values are approximately -7 V (mark), and +7 V (space) when level-translated to
non-return-to-zero RS-232 levels.

| NCP1503 Topic 3 Page 89 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The transmitter clocks out serial data at the transmission rate. The receiver samples the
line at intervals determined by that clock rate to receive the data. It is critical that the
sending and receiving clocks are at the same rate, otherwise the receiver will be sampling
the line at the wrong times. In actuality the receiver typically samples the line at a much
higher rate and considers multiple samples per bit time to determine the state of each
received bit. The 9512X SCI modules have a sampling rate that is 16 times the bit rate.

The resting state between characters is called “mark idle”, and is a continuation of the stop
bit. Therefore, the start bit is always a space, to let the equipment know data is coming.

The number of bits transmitted per second is known as the baud rate. The data rate is
actually less, since the framing start and stop bits and the error-checking parity bit, if used,
do not contribute to the data payload.

Baud rates for serial communications are relatively slow by today’s standards. The following
is a fairly comprehensive list of available baud rates:

75

110
300
600
1200
2 400
4 800
9 600
14 400
19 200
38 400
57 600
115 200

| NCP1503 Topic 3 Page 90 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Initializing the Serial Communications Interface

To activate an SCI module on the 9512X, you typically need to configure just three
registers. A full description of the activities of these registers is found in chapter 11 of the
9S12X “Data Sheet”. Look these up if you want more a more detailed understanding of the
operation of these registers than is provided below.

The first register, SCIBD, is a sixteen-bit register (SCIBDH/SCIBDL) that controls the baud
rate for the module, and requires a 13-bit value as a clock divisor.

11.3.2.1 SCI Baud Rate Registers (SCIBDH, SCIBDL)

7 6 5 4 3 2 1 0
IREN TNP1 TNPO SBR12 SBR11 SBR10 SBRY SBR8
Reset 0 0 0 0 0 0 0 0

Figure 11-3. SC| Baud Rate Register (SCIBDH)

7 6 5 4 3 2 1 0
‘:{ SBR7 SBR6 SBRS SBR4 SBR3 SBR2 SBR1 SBRO
Reset 0 0 0 0 0 0 0 0

Figure 11-4. SC| Baud Rate Register (SCIBDL)

Read: Anytime, if AMAP = 0. If only SCIBDH is written to, a read will not return the correct data until
SCIBDL is written to as well, following a write to SCIBDH.

Write: Anytime, if AMAP = 0.

NOTE
Those two registers are only visible in the memory map if AMAP =0 (reset
condition).
The SCI baud rate register is used by to determine the baud rate of the SCI, and to control the infrared
modulation/demodulation submodule.

Table 11-1. SCIBDH and SCIBDL Field Descriptions

Field Description
T Infrared Enable Bit — This bit enables/disables the infrared modulation/demodulation submodule.
IREN 0 IR disabled
1 IR enabled
6:5 Transmitter Narrow Pulse Bits — These bits enable whether the SCI transmits a 1/16, 3/16, 1/32 or 1/4 narmow
TNP[1:0] |pulse. See Table 11-2.
4:0 SCI Baud Rate Bits — The baud rate for the SCl is determined by the bits in this register. The baud rate is
70 calculated two different ways depending on the state of the IREN bit.

SBR[12:0] |The formulas for calculating the baud rate are:
When IREN = 0 then,
SCI baud rate = SCI bus clock / (16 x SBR[12:0])
When IREN = 1 then,
SCI baud rate = SCI bus clock / (32 x SBR[12:1])
MNote: The baud rate generator is disabled after reset and not started until the TE bit or the RE bit is set for the
first time. The baud rate generator is disabled when (SBR[12:0] =0 and IREN =0) or (SBR[12:1] = 0 and
IREN = 1).
Note: Writing to SCIBDH has no effect without writing to SCIBDL, because writing to SCIBDH puts the data in
a temporary location until SCIBDL is written to.

MC9S12XDP512 Data Sheet, Rev. 2.21

482 Freescale Semiconductor

| NCP1503 Topic 3 Page 91 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The three most significant bits of this 16-bit register can be 0, as you will not be using the
infrared configuration for this course. The actual baud rate is the bus frequency (8 MHz on
your board) divided by 16 divided by the 13-bit value provided in SCIBDH:SCIBDL. By the
way, you can simply write a sixteen-bit value to SCIBD. Since there are a humber of SCI
ports available, the prototype file distinguishes between them by inserting a number into
the register name. The one we want is SCIOBD. This port is connected to the 9-pin RS-232
connector on your 9S512X board.

If you want to access the other SCI ports, SCI1 is connected to the infrared hardware on
your 9S12X board, and the other ports are available at the break-out headers - just look up
the appropriate pin numbers for TX and RX for the channel you're interested in. There are
six SCI ports available in total!

If you decide to use the infrared channel for wireless point-of-sight communication, you’ll
also need to manage the upper three bits of SCI1BDH. For standard wired communication,
these can be all be cleared to zero.

Because integer division might make it impossible to hit the desired baud rate exactly, you
will need to select a value that makes the baud rate as close as possible to the target rate.
For example, if you wanted to generate a 19 200 baud rate, what value would you put in
SCIOBD?

8000000/ 16 / x = 19200
X = 26.0417

We can't place a value of 26.0417 into the baud register. A value of 26 will provide a baud
rate of 19230.8 baud. The oversampling mechanism used by the receiver compensates to
some extent for baud rate mismatch - but it has its limits.

As it turns out, the SCI modules are somewhat tolerant of clock slippage. The Data Sheet
indicates that slow data tolerance (characters arriving slower than expected) is 4.63% and
fast data tolerance (characters arriving faster than expected) is 3.75%.

It is suggested that your baud rates not deviate by more than 2%, as the other side of the
connection will likely have tolerances to deal with as well.

The next configuration register to consider is the SCI Control Register 1, shown on the
following page.

| NCP1503 Topic 3 Page 92 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

11.3.2.2 SCI Control Register 1 (SCICR1)

7 6 5 4 3 2 1 0
LOOPS SCISWAI RSRC M WAKE ILT PE PT
Reset 0 0 0 0 0 0 0 0

Figure 11-5. SCI Control Register 1 (SCICR1)
Read: Anytime, if AMAP = 0.
Write: Anytime, if AMAP =0.

NOTE
This register is only visible in the memory map if AMAP =] (reset
condition).
Table 11-3. SCICR1 Field Descriptions
Field Description

7 Loop Select Bit— LOOPS enables loop operation. In loop operation, the RXD pin is disconnected from the SCI
LOOPS | and the transmitter output is internally connected to the receiver input. Both the transmitter and the receiver must
be enabled to use the loop function.

0 Normal operation enabled
1 Loop operation enabled
The receiver input is determined by the RSRC bit.

5] SCI Stop in Wait Mode Bit — SCISWAI disables the SCI in wait mode.
SCISWAI |0 SCl enabled in wait mode
1 SCI disabled in wait mode

5 Receiver Source Bit — When LOOPS = 1, the RSRC bit determines the source for the receiver shift register
RSRC input. See Table 11-4.
0 Receiver input internally connected to transmitter output
1 Receiver input connected externally to transmitter

4 Data Format Mode Bit — MODE determines whether data characters are eight or nine bits long.
M 0 One start bit, eight data bits, one stop bit
1 One start bit, nine data bits, one stop bit

3 Wakeup Condition Bit — WAKE determines which condition wakes up the SCI: a logic 1 (address mark) in the
WAKE most significant bit position of a received data character or an idle condition on the RXD pin.
0 Idle line wakeup
1 Address mark wakeup

2 Idle Line Type Bit — ILT determines when the receiver starts counting logic 1s as idle character bits. The
ILT counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of
logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the
stop bit avoids false idle character recognition, but requires properly synchronized transmissions.
0 Idle character bit count begins after start bit

1 Idle character bit count begins after stop bit

1 Parity Enable Bit — PE enables the parity function. When enabled, the parity function inserts a parity bit in the
PE most significant bit position.
0 Panty function disabled
1 Parity function enabled

0 Parity Type Bit — PT determines whether the SCI generates and checks for even parity or odd parity. With even
PT parity, an even number of 1s clears the parity bit and an odd number of 1s sets the parity bit. With odd parity, an
odd number of 1s clears the parity bit and an even number of 1s sets the parity bit.
1 Even parity
1 Odd parity

This register controls the main communications behaviours of the module. For example, we
probably don’t want loopback mode, we want the SCI to be enabled in Wait Mode, we want
8 bit data, the device should wake up even on an idle line following a start bit, and we don’t
want parity checking.

So, we probably want SCIOCR1 = 0b00000000!

(Note the typo in the description of “Parity Type Bit”. I guess errors are to be expected in a
1300 page document!)

| NCP1503 Topic 3 Page 93 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The final configuration register to consider is the SCI Control Register 2.
11.3.2.6 SCI Control Register 2 (SCICR2)

7 6 5 4 3 2 1 0
R
W TIE TCIE RIE ILIE TE RE RWU SBK
Reset 0 0 0 0 0 0 0 0

Figure 11-9. SCI Control Register 2 (SCICR2)

Read: Anytime
Write: Anytime
Table 11-9. SCICR2 Field Descriptions

Field Description
7 Transmitter Interrupt Enable Bit — TIE enables the transmit data register empty flag, TDORE, to generate
TIE interrupt requests.

0 TDRE interrupt requests disabled
1 TDRE interrupt requests enabled

6 Transmission Complete Interrupt Enable Bit — TCIE enables the transmission complete flag, TC, to generate
TCIE interrupt requests.
0 TC interrupt requests disabled
1 TC interrupt requests enabled

5 Receiver Full Interrupt Enable Bit — RIE enables the receive data register full flag, RDRF, or the overrun flag,
RIE OR, to generate interrupt requests.
0 RDRF and OR interrupt requests disabled

1 RDRF and OR interrupt requests enabled

4 Idle Line Interrupt Enable Bit — ILIE enables the idle line flag, IDLE, to generate interrupt requests.
ILIE 0 IDLE interrupt requests disabled
1 IDLE interrupt requests enabled

3 Transmitter Enable Bit — TE enables the SCI transmitter and configures the TXD pin as being controlled by
TE the SCI. The TE bit can be used to queue an idle preamble.

0 Transmitter disabled

1 Transmitter enabled

2 Receiver Enable Bit — RE enables the SCI receiver.
RE 0 Receiver disabled
1 Receiver enabled

1 Receiver Wakeup Bit — Standby state

RWU 0 Normal operation.

1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes
the receiver by automatically clearing RWU.

0 Send Break Bit — Toggling SBK sends one break character (10 or 11 logic 0s, respectively 13 or 14 logics 0s
SBK if BRK13 is set). Toggling implies clearing the SBK bit before the break character has finished transmitting. As
long as SBK is set, the transmitter continues to send complete break characters (10 or 11 bits, respectively 13
or 14 bits).

0 No break characters
1 Transmit break characters

MC9S$12XDP512 Data Sheet, Rev. 2.21

488 Freescale Semiconductor

This register configures power state and interrupts for the module. We aren’t interested
(yet) in interrupts, but do want the transmitter and receiver turned on.

So, for now, the best choice for configuration is SCIOCR2 = 0b00001100.

| NCP1503 Topic 3 Page 94 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

SCIO Library

The following is the SCIO_Lib.h header file that will probably be provided to you by your
instructor.

##Com port SCI0 initialization and commands
#~Processor:  MC9512EDPS12

SoCry=tal: 16 MH=z

ssby P Ho== Taylor

SoMay 2015

wvold SCIO0O_Init{unsigned long):. ~~any wvalid baud rate can be passed to this: 8-bit. 1 Stop. Ho parity. no interrupts
woid SCIO0 _Init9600{woid): S<8-=bit. 1 Stop., Ho parity. no interrupts

woid SCIO0_Initl9200{woid); <~8-bit. 1 stop. Ho parity. no interrupts

wvoid SCI0_TzChar(unsigned chaxr);
unsigned char SCI0_RzChar(wvoid):

ssHon-blocking: returns HULL if no new walid character is available
woid SCI0_TxString(char =)

SrRequires a HULL-terminated ASCII string in the main program

To begin with, you should create the appropriate functions in your SCIO_Lib.c to match the
prototypes for the following two initialization routines. Once these are working, you should
develop the first routine, SCIO_Init(IBaud), which provides you the flexibility of operating in
any of the valid baud rates, but requires that you know what these valid rates are.

e SCIO_Init9600
e SCIO_Init19200

Unfortunately, you won't be able to verify these initialization routines until you've created
functions to communicate through the SCIO port. That’s our next item of discussion.

| NCP1503 Topic 3 Page 95 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Communicating through the Serial Communications Interface

Characters are transmitted when written to a register called SCIDRL (SCI Data Register,
Low byte). There are low and high SCIDR registers, but the high register is only used for
9-bit data formats. Since you will only be using 8-bit data transfers in this course, you will
only need to write to the low data register.

Care must be taken to write data to the SCIDRL only when the module is ready. The SCI
Status Register 1 (SCISR1) indicates the current status of the port. The following selection
from the data sheet has been abbreviated to discuss the only two bits that are significant to
us at this point. If you need enhanced error handling, consult the full discussion in the data
sheet.

Chapter 11 Serial Communication Interface (S12SCIV5)

11.3.2.7 SCI Status Register 1 (SCISR1)

The SCISR1 and SCISR2 registers provides inputs to the MCU for generation of SCI interrupts. Also,
these registers can be polled by the MCU to check the status of these bits. The flag-clearing procedures
require that the status register be read followed by a read or write to the SCI data register.It is permissible
to execute other instructions between the two steps as long as it does not compromise the handling of /O,
but the order of operations is important for flag clearing.

7 6 5 4 3 2 1 0
R TDRE TC RDRF IDLE OR NF FE PF

w
Reset 1 1 0 0 0 0 0 0

I:lz Unimplemented or Reserved

Figure 11-10. SCI Status Register 1 (SCISR1)
Read: Anytime

Write: Has no meaning or effect

Table 11-10. SCISR1 Field Descriptions

Field Description

7 Transmit Data Register Empty Flag — TDRE is set when the transmit shift register receives a byte from the
TDRE SCI data register. When TDRE is 1, the transmit data register (SCIDRH/L) is empty and can receive a new value
to transmit.Clear TDRE by reading SCI status register 1 (SCISR1), with TDRE set and then writing to SCI data
register low (SCIDRL).

0 No byte transferred to transmit shift register
1 Byte transferred to transmit shift register; transmit data register empty

5 Receive Data Register Full Flag — RDRF is set when the data in the receive shift register transfers to the SCI
RDRF data register. Clear RDRF by reading SCI status register 1 (SCISR1) with RDRF set and then reading SCI data
register low (SCIDRL).

0 Data not available in SCI data register
1 Received data available in SCI data register

When transmitting, check for availability of the port using the Transmit Data Register Empty
Flag (TDRE) in bit 7 before attempting to write to the port. If TDRE is a ‘1’, then it is OK to
write a new byte to the SCIDRL. NOTE: TDRE does not indicate that transmission is
complete - it only indicates that the transmit data register is empty, which is good enough
for us. Bit 6 (missing from the above clip) indicates when transmission is actually complete.

To read data from the SCI module you need to read the SCIDRL register. This is a
bidirectional register, as writing to it transmits data and reading from it fetches received
data.

There’s no point in reading the register to get a received byte until a valid new one has
actually been received. You can check to see if a byte has been received since the last read
by looking at the Receive Data Register Full flag (RDRF), which is bit 5 in the SCISR1

| NCP1503 Topic 3 Page 96 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

register. This flag will be set when a new byte of data has been received by the module.
So, if this flag is a 1, you should read from SCIDRL to extract the received byte.

NOTE: The SCI module is only able to buffer one received byte. If you fail to extract a
received byte before another is received, a buffer overrun condition occurs and the previous
data character will be lost.

When you create a routine to receive a byte of data from the SCI, you don’t necessarily
want the subroutine to block, waiting for a byte to be received. In actual operation, the
byte may never be sent due to a failure in communication, so the subroutine could block
forever. As a general rule, you want to avoid creating routines that could block indefinitely.

A better approach would be to check to see if a byte has been received and is waiting to be
read. If so, return it; if not return from the subroutine, but indicate that a byte was not
available. In an Assembly Language routine, it would be typical to use a condition-code
register bit, such as Carry, to indicate whether or not a new byte has been received.
However, in C, that isn't a workable plan. Instead, you may want to return a NULL
character (ASCII code 0), as that's a very unlikely character to have appearing in a
transmitted file. (In some protocols, the actual transmission of a delimiting character like
this is indicated by sending the character twice; the programmer would need to do an error-
trapping routine that would recognize this condition and handle the character as a special
case.) In our case, we'll simply write our main program so that it treats any NULL returned
as an indication that no valid character is present, so we’ll ignore that result.

At this point, you will want to write the following functions indicated in your library header
file:

e SCIO_TxChar
SCIO_RxChar

Once you've written these, you can do a loop-back test by running SCIO_RxChar to receive
a character from your computer’s keyboard, then sending that character by running
SCIO_TxChar to send the character back to your computer, operating as a "dumb terminal”.
The software you will likely be asked to use is called Tera Term Pro.

Terminal Emulation

This is your chance to make a highly-advanced and super-fast computer act like a 1960’s
remote terminal, designed to allow mere mortals to communicate with main-frame
computers like the UNIVAC! Here are a couple of pictures of real terminals, which you are
going to emulate. The one on the left uses paper instead of a monitor!

| NCP1503 Topic 3 Page 97 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The term “dumb terminal” was coined to indicate that, in this configuration, your computer
will be doing nothing other than sending and receiving ASCII characters, just like the
terminals shown on the previous page. Of course, since our computers are multi-tasking
devices, they will actually be doing a gazillion things in the background; however, the
terminal emulator window will not be doing anything other than acting as a dumb terminal.

Inside Tera Term, you will need to set up a number of characteristics so that the dumb

terminal can communicate with your 9512 development kit. These are found in the “Setup”
menu.

First, you need to make Tera Term into the right dumb terminal. Here’s the “Terminal”
setup you want:

Tera Term: Terminal setup

Terminal size New-line —
80 w24 Receive: [CR -
[~ Term size = win size Transmit: |cp - Cancel

[ Auto window resize

Terminal ID:  |VT100 ~ [~ Local echo
Answerback: [~ Auto switch [WVT<->TEK)

Help

FEp

Next, you’ll probably want your "Window” setup to look like the following:

Tera Term: Window setup

Title: Tera Term

Cursor shape

il

[~ Hide title bar Cancel
& Block I~ Hide menu bar
" Vertical line ™ Full color Help
" Hori tal li
orizontalfine ¥ Scroll buffer:  [100 M

Color

& Text Attribute Mormal -
" Background Reverse

R0 < 3] ABC
G:o 4l +
B:o0 <] | i

The following “Font” setup makes your display fairly readable:

Tera Term: Font setup

Font: Size:

Terminal 14

Lucida Console
Lucida 5Sans Typewriter i
Monospacg21 BT 3

»
(20}
2
2 |
e
&3

4 [m

[ Enable bold style

| NCP1503 Topic 3 Page 98 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

Last but certainly not least, you need to do the following “Serial Port” setup:

Tera Term: Serial port setup

%

Port:

Baud rate:
Data:
Parity:
Stop:

Flow control:

Transmit delay

0 msecichar

0K

Cancel

Help

1] msecfline

This setup matches the settings for the SCI0O_Init19200 initialization routine in your library.
If you want to communicate at a different baud rate, this is where you would select that.

Before you leave Tera Term Pro, you will want to save these configuration changes so that

you don‘t have to do this every time you run the dumb terminal.

‘ Tera Term - COM
] Fi\
Terminal... 1
Window...
Font...
Keyboard...
Senial port...
TCR/IP...

General..

Save setup...
Restore cetup...

Load key map...

T

From the “Setup” menu, select “"Save setup...” and simply accept the defaults. This will
overwrite the default setup file with your new settings, and Tera Term will start up the way
you want it to for the rest of the semester (unless your computer gets re-Ghosted).

Once you've done this configuration, have written a program that initializes the 9512X,
have connected your 9512X board to the computer using a 9-pin Comm cable, and have
written a small program to receive a character from the keyboard and transmit it back to
the dumb terminal, you should be able to verify that your functions are working properly (or

not). Have fun!

| NCP1503

Topic 3

Page 99 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

SCI0_TxString

Quite often, you’ll want to send multiple characters to the dumb terminal (or to other
peripherals or equipment that’s looking for ASCII characters). For example, you probably
don’t want to send the characters for the previously-listed escape sequences one-by-one
every time you want to control the terminal. As with the LCD, the best way to send these
sequences, as well as longer strings of characters, is by using a null-terminated string of
ASCII characters. The SCIO_TxString function you will be creating can handle strings of any
length, since it is expecting a string that ends with the NULL character (ASCII code 0). The
routine transmits each character, then checks to see if the character was a NULL. Ifitis a
NULL, program execution exits the function.

You should be able to generalize what you did with LCD_String(*) to develop
SCIO0_TxString(*). If you need further assistance, your instructor can give you direction.

The simple string management program shown on the next page should be a good
reference for your work with the SCI port. Here are some pertinent things to notice:

1. The author’s version of SCIO _Init19200 is shown, from which you can build the other
initialization routines required. Although it’s probably not necessary for most of what
you’ll be doing, you’ll notice that the contents of the upper three bits of the sixteen-
bit baud rate register SCIOBD have been preserved, in case there’s a chance that the
infrared settings might be significant. They really shouldn’t be, because this SCI port
is connected to a wired comm port.

Notice that you need to calculate the value for the baud rate register, SCIOBD.

Note that there was no need to add a NULL character to the end of the string - the

IDE does that automatically. However, in the declaration of the array size, room had

to be provided for the NULL.

4. The undeclared for (;;){} loop provides an endless loop, which shows up on the
screen as an endless printout of the string.

5. Notice that occasionally, there’s an unexpected letter appearing on screen. These
characters have been entered from the keyboard using SCIO_RxByte(). Note that we
read the SCI port, check to see if it contains a valid character from the keyboard,
and if it does, we print it.

whn

Note: The header information shown on the next page hasn’t been updated to show who
wrote it, when, and what it does. As Stan and Jan Berenstain once famously said “That is
what you should not do. So let that be a lesson to you.” (The Bike Lesson by Stan and Jan
Berenstain, 1964 Random House, Inc.)

| NCP1503 Topic 3 Page 100 |




Embedded Systen1s|

COMPUTER ENGINEERING TECHNOLOGY

L]

——

Tyl 3L ST s1y)
L i3 ST STyj
i1 ST s1yj
ST Styj
ST s1y]
I STYj4
I siy]

i+ ST s1yj
i+1 ST STy
i}l ST s1yj
P11 ST S1Yj
i} ST SI()S

i1D ST STY| 43T ST

i1 ST s1y)

i+1 ST STyj
i}l ST Styj
i}1 ST siy]

i}1 ST s1y)
i}L ST STy
i+ ST s1yj

i+l ST STy
i1 ST s1yj
i+ ST s1yj
i} ST S1Yj
i} st siy)

STYl 1T ST STyj

i} st s1y)

st s

il ST sy
iDL ST STY)
dEL ST STy

i1 ST s1y)
i+l ST s1yj
i+1 ST STy

{

$(=34g2) 214920105
(0=i=3487) 3T
C()EYAERT 0105=23 430

Tle TEYDYBUTILEH]T(IDS PICA
IIPTOL)2IAOEY [T05 TeyD paubisun
{xeys paubisun)ojigE] (105 PIOA

C{PTOA)O09EITUI_NIDS PIOA
C{PTOA)N0ZETHTUI_0IDS PTOA
T{BuoT pRubtsun)iiulTOI0S PIOA

J{EuTtIySo)EUTIYSHLTOIOS

dooT wexbford uteu.s
1

5102 Al s .
IoThe] s=0g J AQ-s (o) aog
ZHH 9T  TEISAIIsS
CISdIXZTSEDH  (I0SS20024-

SPUEUUOD PUE UOTJEZTTETITUT QIS JI00 wos. . TO)00ZETITIITDIOS

i3I ST s1y]

STyl
Tyl

i1l ST STYjp
i1l ST STY)

i}T ST Styj
i}l ST s1y]
L it st swyj

i}T ST Styj
i}1 ST STyJS
i+1 ST s1q)

i}T ST S1Yjp
i}1 s1s1y]

i}1 ST STYj
i}1 ST siy]
i}l ST Styj

$11 ST STY)

i+1 ST S1yj
i+1 sT siy]
{31 ST STYj

i}l ST Styj

| CMPE2200

M ST STy
ST S1Yj
st syl

T Styj

ill ST STY)
i1 ST STY)
il ST STY)
i1l ST STY)
STYl 1T ST STy)
Tyl §T ST sST1Y)
1 i3t ST STyj

§1T ST STY)
i1 ST STY)
T ST STyl
T ST STyl

itl ST

i}T ST STYj
i}1 ST s1y]
i} ST STYj
i} ST STYL 3T
11 ST sty] i

i}1 ST S1yj
i}1 ST S1yjp
i}1 ST siy]

il ST s1yjp
i1l ST STY)

i}1 ST STyj
i}1 ST styjy
i3I ST s1y]
i}T ST Styj
i}1 ST s1y]
i}l ST STYj
i}T ST STYj
i+1 ST s1y)
M ST STy
ST STYjS
St sty| 3}

STy i1l ST

i+1 ST S1yj
i}1 ST s1y)

i} ST STyl
VST STYIP
TsTSTg) 3T

i}L ST STyj
i}I ST siy]
i+1 ST Styj

i+1 ST s1y)
i}l ST STyYj

il
it
1L s
$lT ST
i1l ST 3
il ST STy
i1T ST S1Y|h
il ST sSTy)
i1l ST STY)
il ST STY)
i1T ST STY] b

i1l ST STY)
il ST STY)
$l1 ST STYJ
i1T ST STyj
§1T ST STY)
i1l ST STY)
§1T ST STYj
i1l ST STY)
1T ST STYyJ
1T ST STY)
ST STy)

STyl

- -

P ST STYL 3T ST STYL 3 Tieiseidoppaguesonsseny| yed « A « G « W « {} « @ EEEEESEﬂM

13T ST ST 1}T ST ST i -
b1 SESIT |ipststl s voTws g ——
ﬁ”—H W_.” w.:._._. —”_..H W..— W.:._._. -H.._” m._” jutod Arjus UTEUW -
i3 ST STyl 3T ST STY| 3T ST S w
30 ST STY] 3T ST STy (proajuz=y proo

i1l ST STY] 3T ST STY|
i1l ST STY] 3T ST STY| 7 -
. . . sdnyoo] g
1T ST STY] §3T ST STY] p .

2140 Ieyd paubr=un
Suo 03T BT SIYL, = [pT]BUTIISD TEYD

o s
saTqeTIe, s
e s

sadijojorg o

JATT0I05, SPnTouTs

dpH  mopuipy  jouen  dnEs wp3 34 . .
r—ﬂ_j LA TWGOD - wus) B1a] E P SSPOIOUT AXeaqr] \H
s®  SUOTITUTISP DTITID0S-SATH2A4TISP = W SATIERATISR, SPUTOUTH
i oE SOIDEW PUE SSUTJOP UOWNOD . <Y JOPTY: SPNTOUT#
=Ieyd yealq Ou dnsyes [SUIOU pPaTOEUS I} =9dnIISqUT OU- s TO0TI000090=2400I05
Ajtred ou'oyes STpl dojsT e3epg (3IL3ET3Toa UT dojE doo] Ouss T0000000090=Ta00I05
dHL Pwe HIYI *03 sEutiges Syy SI0isslss TPTOHHIZ =| HIF0IDS - -
97 0% SPUNSI OOZETL000005 < 19z =190105 aIsy paisijus =1 welbfoxd syy jo uotyeusTdEe pa{Iisp SI0W ¥ =TTEE] 0
dNL pue HI¥I Ioj sbutiiss sy saxssard,s ‘00000TTTH0 % HIZOIDS = PTOHYIS Ieys paubisun
3 S)EUOTSTASS23ET ayeq s
(PIO&IO0ZATITUI OIS PIOA noi g STyl DIOYINY
ZHH 9T ipaads 1231y s
WU qTT 0105, SPRiautg = 2 T5d0XeTSEDH I0ES8I0ILg
WU SATIEATISP, SPu{auty uoT}Ewe [dRITUIH — BoIginog weIBoxd Z10H oo
<4 FIPTU> SpmIouL [m] s -
g 005 SSURIGM\XZ L SE\AOPIsay IssensiasyD | (g « | < _mM_ P VR TS 0 BN S3AIN0S 158 | (105 SRRl Y7 L 56\ dOpfSa SsanSIBE 1, D | (B & 1 & ﬂ Eo ¥ I A

a1 oos

e ﬂ

Page 101 |

Topic 3

| NCP1503



| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The VT100/VT52 Terminal

The terminal program on the PC side of the connection should now be set up to emulate a
VT100 terminal. These terminals were able to display received 7-bit ASCII characters,
manage a cursor, and send characters from a keyboard through an RS-232 connection.

Escape Sequences

Some sequences of multiple characters are interpreted in a special way by the terminal, and
are not displayed. Instead, these sequences trigger a change in the terminal. They may
alter the cursor position, character or background color, and other terminal settings.

The character sequences the VT100 terminal recognizes are typically ‘escape sequences’.
The name comes from the fact that these character sequences begin with an escape
character. You will use several different escape sequences to control the terminal.

The following small table shows a few of the sequences of interest. A more complete, but
not entirely trustworthy, set is available in Moodle.

A word of caution: Not all terminal emulators produce the same results from the escape
sequences, even if they claim to emulate the same terminals (e.g. VT100). You will
probably soon find that a number of the sequences you try within Tera Term don’t do what
you want them to do. HyperTerminal will produce yet other results. Trial and error will,
hopefully, bring you satisfactory performance.

Escape Sequence (<esc> means Function

escape character, or 0x1B)

<esc>[2K Erase Line

<esc>[y;xH or <esc>[y;xf Set Cursor Position (y = row, x = column)
<esc>[31m Set text red

<esc>[?25l (that's lowercase L for LOW) Cursor off

<esc>[?25h (that’s lowercase H for HIGH) | Cursor on

Previously, you created ToUpper() and ToLower() routines. One example of using these
routines would be in handling the response to a “Y/N” question, received using
SCIO_RxChar(). The operator could just as easily enter 'y’ instead of ‘Y’, or 'n’ instead of
‘N’, so your program should respond to either case. This is easily done by simply running
the response through ToUpper() and responding to the uppercase value returned.

| NCP1503 Topic 3 Page 102 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The next page is a screen capture of a simple “adder” that demonstrates, among other
things, the way in which ASCII values from the keyboard need to be manipulated in order to
do simple math, and how the results need to be manipulated back to ASCII codes in order
to display them in a manner that is meaningful to human operators. Here are some
pertinent things to notice:

1. In the string declaration, the escape characters ‘\r\f’ are interpreted as a carriage
return and line feed respectively, moving the text display on screen down to the
beginning of the next line.

2. The string array size is declared to be one larger than the number of characters, to
allow for the NULL terminator.

3. Single characters can be sent to the terminal by putting single quotes around them.

4. Special characters can be sent to the terminal as hexadecimal numbers, or, for that
matter, binary, octal, or decimal numbers. 0x0d and 0x0a are the ASCII codes for
carriage return and line feed respectively.

5. In order to add two numbers together, they must be true numbers, not ASCII codes;
In order to display a true number, it must be converted to ASCII for the terminal.

6. This simple program doesn’t check for non-valid (i.e. non-numeric) entries. A better
program would reject these and would wait for a valid input.

7. Note that the larger hex values (A - F) can be entered as either lowercase or
uppercase, and are interpreted correctly.

8. This simple routine can’t handle results that are larger than a single digit (i.e. 0x10
up to Ox1E, which is OxOF + Ox0F). Only the lower digit is displayed. A better
program would send two characters, or would at least trap the error.

| NCP1503 Topic 3 Page 103 |




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

B o e leis]
b~ {} v M.~ [@+ o'~ Path: |C:\Users\rosst\Desktop\3512X\Projects\AdderOn SCI\Sources\main.c O
e % g
#*HC12 Program: Adds two single digits, displays one digit =
*Processor MC9512¥XDPEL2 =
*#H{tal Speesd: 1e MH=z
*huthor: P Ro==z Taylor
*[ate: Septenber 2015
*
#0=tails: Doesn't handle results bigger than 0=0f
s
#include <hidef h:» s common defines and macros
soginclude <stdio he S0 AHST C Standard Input-Output functions
SAinclude <math. b s BHST C Mathematical functions
#include "deriwvative h" < derivative—-specific definitions
-
* Librarvy includes
-
#include "SCIO0O_Lib. k"
#include "Hi=c_ Lib.h"
Vs
* Prototypes
s
I
® Wariables era Term - COM1 VT
File Edit Setup Control Window Help
char cString[3d6] = "Press two numbers to get the sum:~r~f"; p 1 b 1 t th
char cASCIT: ssfor input and output of ASCII character ress Two numbers 10 ge e sum
char cHuml: 1+2=3
char ctuns; Press two numbers to get the sum
p A+0=0
* Lookups Press two numbers to get the sum
q+t=0
Press two numbers to get the sum
. . . . . a+2=C
wold main{wvoid) <7 maln entry point
Press two numbers to get the sum
_DISABLE_COF(); A+2=C
. Press two numbers to get the sum
® Initializations a+b=5
Press two numbers to get the sum
SCI0_Init19200(); 9+8=1
Press two numbers to get the sum
for (::) <sendless program loop
{
Ie [
* Hain Program Code ]
&
SCI0N_TeString(cString);
cASCIT=0; srsztart with "no input"
while (cASCII==0) sowait for input from keyboard
cASCII = SCI0_R=Bvte():
SCID_T=Bvte{cASCII): s<echo input to screen
SCIN_T=Bvte('+'): ssdi=play a plus =ign
cHuml=ASCIIToHex(TolUpper (cASCIT) )  srsidiot-proof number recognition
chSCII=0; #~as abowve
while (cASCITI==0)
cASCIT = SCIN RxByte():
¥
SCIN_TxByte(cASCIT):
SCID_T=Byte('='): ssdizplay eguals =sign
cHunZ?=ASCTIToHe= {Tolpper {cASCITY ) “/number recognition
cHum2+=cHuml ; soperform the addition
cASCII=HexTolASCII{cHunz) sszingle—digit ASCII — no error trap
SCID_T=Byte(cASCIT): Sotransmit the sum to screen
SCID_ T=BEvte{0=z0d4): SAoarriage return
SCIN_T=Bvte(0=z0a): ~sline fesd
¥
H
| NCP1503 Topic 3 Page 104 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Floating-Point Math in ANSI C

Up until now, we've been doing mathematical operations using integers, which have no
fractional component. The 9512, operating in ANSI C, can do floating point math, as well.
One reason we've been avoiding this until now is that floating point math requires fairly
large amounts of memory, takes a lot of clock cycles, and involves some fairly complex
functions. However, there are times when it just makes sense to work with real numbers
rather than integers, as long as you are aware that download times will increase, you might
run out of memory, and most everything is going to slow down.

To begin with, when you are setting up a new project, you need to specify that you are
going to be using floating point math, and in which format. One of the screens you've been
going to in order to select the memory model also gives you the option of working in
floating point:

“
HC(5)12(X) Microcontrollers New Project [

Wizard Map
Which level of startup code do you want to use? 1Al float and double variables are -
Select ‘minimal startup code’ for best code density.  |32hit /IEEE3? for the HC12.

Devi dC i
s  _a (" minimal startup code

XGATE Setup {* ANSI startup code

Project Parameters Which memany model shall be used?

Add Additional Fileg {* Small
Processor Expert (l: Barked
C/C++ Options £ Custom
PC-Lint

Select the floating point format supported.
Select "Mone’ for best code density.

" Mone
{*+ float is IEEE32. double is IEEE32
(" float iz IEEE3Z2, double is IEEEG4

< Back Mead = Finish Cancel

L~ o

From experience, your instructors recommend choosing “float is IEEE32, double is IEEE32",
as shown above: the other option has been problematic.

Also, in the skeleton file used when creating a new project, you will probably need to invoke
the ANSI C <stdio.h> library, which, among other things, helps with formatting strings,
and, depending on what mathematical functions you intend to use, you may also need to
invoke the <math.h> library.

| NCP1503 Topic 3 Page 105 |




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

<stdio.h>

Here are the functions available in <stdio.h>. You can find it at

C:\Program Files (x86)\Freescale\CWS12v5.1\lib/hcl2c\include\math.h.

fopen fclose fgetpos
fsetpos freopen fseek
scanf remove ftell
sscanf rename rewind
vsscanf tmpfile fgetc
puts tmpnam fread
printf fflush fwrite
fprintf setbuf fgets
viprintf setvbuf fputs
sprintf fscanf
vsprintf ungetc
set_printf gets
vprintf

Since there’s no file structure, or even mass storage device, on your microcontroller board,
none of the file-related commands are of any direct use to you, and since your
microcontroller board doesn’t have a keyboard or monitor, none of the standard user-
interface device (console) commands do anything directly, either. So, what use is this
library to you? You could potentially set up your board with some “Standard I/O” devices
(keyboard interface, video interface, external memory), and then you would have to define
the parameters of these devices so the board knew what to access using the console
commands. This would be a significant challenge (beyond this course), but not impossible.

However, there are other functions in this library that are of direct use to you. Commands
related to string manipulation fit this category; “sprintf”, for example, is a function you can
use to format strings, particularly those with floating-point numbers in them.

Here’s an informative example from a program that has previously received a 12-bit 2's
complement value from the X channel of an accelerometer, placed into the variable “iX":

if (sprintf{DispString, "X = %+4.3f g LoAXS1000. 0000

LCD Po=(0.0):
LCD String(DispString):
1

Note the following:

e All sprintf returns is a flag to indicate a valid result — hence the “if” statement.

e The variable “"DispString” was declared previously in the setup for this program as a

21-byte char array, and is used as the target for sprintf. (21 provides enough room

for the 20 characters on a line of the display, followed by a NULL terminator.)

The contents of the string are contained inside double quotes.

The “%"” symbol indicates that formatting commands for a fillable field follow.

“+” indicates that the sign of the number will be shown, both positive and negative.

“4.3f" indicates that we want to display a floating point number made up of four

digits, of which three will follow the decimal point.

e In the calculation of the value to be placed in the field, we’re dividing by 1000.0 (not
just 1000) to do an implicit cast of the result into floating point format.

Go here for a complete description of the “sprintf” command:
http://www.tutorialspoint.com/c standard library/c function sprintf.htm

| NCP1503 Topic 3 Page 106 |



http://www.tutorialspoint.com/c_standard_library/c_function_sprintf.htm

| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems
<math.h>
This library has a lot of useful functions in it, as shown below.

frexp pow asinf
Idexp sqrt acosf
modf ceil atanf
frexpf floor atan2f
Idexpf fabs log10f
modff fmod expf
cos sincos logf
cosh sncsh powf
sin sqrt_r sqrtf
sinh pow_i ceilf
tan exp_r floorf
tanh log r fabsf
asin cosf fmodf
acos coshf sincosf
atan sinf sncshf
atan2 sinhf sqrtf _r
logl0 tanf powf i
exp tanhf expf_r
log logf r

Again, a lot of information about the use and formatting of each of these is available on the
Internet when you need to use them.

Of all the functions in this library, you’re most likely to use the trigonometry and
exponential groups. It should come as no surprise that the trig functions are radians-based,
so, if you want to work in degrees, you’'ll need to do the appropriate conversions.

Degrees = Radians(1

T

3

The math.h library provides a value for =, but it’s a bit awkward: _M_PI. You might want to
assign that to a slightly more workable variable name - just make sure it's a float. There
are other constants available, too. A complete listing can be found in the header file itself,
under C:\Program Files (x86)\Freescale\CWS12v5.1\lib/hc12c\include\math.h.

| NCP1503

Topic 3

Page 107 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Interrupts

Up to this point, you've been using a technique called “polling” when designing your
software for the 9512X. In this system, you check each peripheral on a regular basis to see
if it needs servicing. So, when you use your switches, you check to see if any of them are
pressed as part of your program; when you are connected to a dumb terminal through the
SCI port, you check to see if a key has been pressed each time you go through that part of
your program.

Interrupt programming unleashes a level of power you've experienced in your C#
programming - the ability to have one process running and having other processes
temporarily take control when another event occurs, such as the click of a mouse button.

Here’s an analogy to show you the difference between polling and interrupts. In a
classroom, an instructor can constantly walk around the lab benches asking each student,
one at a time, if they need help: That's polling, and it keeps the instructor busy all class
period long. Or, the instructor can sit at his desk getting caught up on *marking*, while
students put up their hands to call him over when they need help: That’s using interrupts.

With polling, there’s no problem figuring out where to go next in the program: everything is
linear, and if the routine that requires your attention is in a subroutine, the program always
leaves from a defined point to go to the subroutine, and always returns to where it left.

However, an interrupt can happen at any time and can be completely unpredictable. The
program control must be able to leave what it’s doing, service the interrupt, then pick up
where it was at as if nothing had happened in between.

Interrupts in S12XCPU Assembly Language

Although in this course we won't spend more time programming in S12XCPU Assembly
Language, we will revisit it here in order to gain an understanding of how interrupts work.

This is a good time to compare what’s required, in S12XCPU Assembly Language, for
branches, subroutines, and interrupts.

Action Going To Returning From
Branch Jump to branch address N/A
Subroutine Stack the return point address Retrieve return point from stack
Jump to subroutine address (pushes and pulls handled in code)
Interrupt Stack everything Retrieve everything - program

- return address, Y, X, A, B, CCR | continues as if nothing happened

It's also important to know how to get to and return from these types of routines:

Action Going To Returning From

Branch IMP, BRA, LBRA, BRSET, BRCLR, | N/A
BEQ, BNE, BCC, BCS, BVC, BVS,
BGE, BGT, BLE, BPL, BMI, BLT,
BHI, BLO, BHS, BLS, DBEQ,
DBNE, IBEQ, IBNE

Subroutine BSR, JSR RTS
Interrupt Vector table RTI

| NCP1503 Topic 3 Page 108 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Note: Since everything is retrieved from the stack when returning from an interrupt, you
can't use A, B, D, X, Y, or any of the condition code register bits to return information from
an interrupt. You must place information in global variables instead.

So, how do interrupts work? Each item that can be used as an interrupt will have an
interrupt enable, an interrupt flag, and an interrupt vector address associated with it. The
interrupt vector is a hard-coded address that the microprocessor uses to determine where
to transfer control to when a particular interrupt flag is set. The interrupt vector must be
programmed with the address of the desired routine (called an interrupt service routine or
ISR).

Here’s how to set up a program to use an interrupt:

1. Write the interrupt service routine (ISR), preferably collected with other ISRs under
a header that sets them apart from the rest of the code.

2. Start the ISR with an informative label that the Assembler will interpret as the entry
address.

3. Inside the ISR, make sure you clear the interrupt flag that brought you here. That

usually means writing a “1” to that flag in the associated flag register.

Make sure you exit the ISR with RTI - never try to exit any other way!

Associate the starting address of the ISR with the appropriate Interrupt Vector.

In the initialization of your program, enable the specific interrupt for this routine.

Enable the maskable interrupts with CLI. (Incidentally, SEI turns interrupts off.)

Noo s

The following code snippets show how to set up and use the SCI Receive interrupt to read a
character from the keyboard and echo it to the screen, while spending the remainder of the
time in a power-down WAIT condition.

;Initializations
JSR SCI0Initl92

BSET SCIONSEL,&=00100000 ;olear receive flag
BSET SCIOCEZ, X 00100000 ;enable RIE interrupt

CLI ;enable interrupts=
Main:

FegularLoop:
WAT
BRA FeqularLoon

13363636 36 36 36 36 3636 36 36 36 36 36 36 36 36 363636 36 36 36 36 36 36 36 36 363636 36 36 36 36 36 36 36 36363636 36 36 36 36 36 36 36 36363636 36 36 3636 36 36 36 3636 3636
(% SCI_Echo ISR
;¥Receives a character from the lkeyboard and echoe= 1t to terminal

;¥Fequires an initialization routine for the SCI port
;********************************************************************

SCI_Echo ISE:
BSET SCIOSEL,®00100000 ;clear interrupt flag

LDAA  SCIODREL crecelve character from kevboard

JSE SCIOTzREvte cecho to scresn

RTI
;********************************************************************
D% Interrupt Vectors
;********************************************************************

ORG $FFDA JSCIN SCILCEZ

DC.w SCI_Echo ISE

| NCP1503 Topic 3 Page 109 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

The screen capture below shows just the top of a three-page listing of interrupt vectors,
enough to show where the microcontroller jumps to if an interrupt occurs on Timer
Channel 0, which we’re using in this example:

Table 1-12. Interrupt Vector Locations (Sheet 1 of 3)

Vector Address! Ch):(:::;rIEIDZ Interrupt Source I,ﬁgi Local Enable
SFFFE — System reset or illegal access reset MNone None
$FFFC — Clock monitor reset MNone PLLCTL (CME, SCME)
$FFFA — COP watchdog reset MNone COF rate select

Vector base + $F8 — Unimplemented instruction trap None Nane

Vector base+ $F6 — SWiI None Nane

Vector base+ $F4 — XIRQ X Bit None

Vector base+ $F2 — IRQ I bit IRQCR (IRQEN)

Vector base+ $FO0 $78 Real time interrupt I bit CRGINT (RTIE)

Vector base+ $EE $77 Enhanced capture timer channel 0 | bit TIE (COI)

Vector base + $EC $76 Enhanced capture timer channel 1 I bit TIE (C11)

Vartar hacas GEA &7n Frhanrcad rantirs timar channal 9 I hit TIE /91

The default Vector base is $FF00, so you would add this to the Vector Address column

value.

It's possible to have multiple Interrupt Service Routines running simultaneously. The code
shown on the following page counts up endlessly on the bottom four digits of the seven-
segment display, maintains a timer, grabs characters from console when interrupted by the
SCIO Receive Interrupt, and clears the display in response to an interrupt generated on a
switch connected to bit 0 of Port].

| NCP1503

Topic 3

Page 110 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

HC12 Program
Processor:

Author:
Date:

Details

Crestes sn upcounter based on an interrupt timer
HCOS12EDPS12
Htal Speed: 16 HEH
P Fo== Taylor
April 2014

z

4lso responds to interrupts from the SCI Rz (keyhoard)

IR R EERER]

sexport synbols
XDEF

ABSEHTRY

Entry
Entry

sinclude derivative =pecific mnacros
INCLUDE 'deriwatiwve. inc’

cexport 'Entry’
:for absolute assenbly

=ymbol
spp entry point

e Equates

Variables *
ORG RiMStart sdddress £2000
TimCounter: DC.w 1
(x Code Section *
ORG ROM_40005tart shddress $4000 (FLASH)
Entry:
LDS FRANMEnd+1 :initialize the stack pointesr
Hain:
;Initializations
JSR SewSeg_Init
JSRE SCI0Init192
HOVB #210000000, TSCR1  enable timer module 0
LDAB #200000111 ;2”7 prescaler
STAB TSCRZ :prescaler sst to Bus-/{2"E)
HOVE #x00000001. TIOS cset I0S0 for output compare
HOVE #x00000001, TCTL2 :toggle mods for PTO
LID #6250 2100 m=
ADDD TCHT :=et new event timer values based on clock
STD TCO
BSET TFLG1,%00000001 rolear flag
BSET TIE,%00000001 enable OCO interrupt
BSET SCIOSREL,®00100000 :clear receiwe flag
BSET SCIOCRE2,%00100000 :enable RIE intsrrupt
BECLR DDRJ, %00000001 rensure input at PortJO
BSET PPST, 400000001 :set polarity for rising edge (key press)
BSET PIFJ,%00000001 ;clear PortJ0 flag
BSET PIET,%00000001 ;enable PortJ0 interrupt
CLI ;emable interrupts
LoD #0
RegularLoop
LDE #0
LENE X ®
ADDD #1
JER SewSeg_Lowd
ERA Regulsrloop
(x Subroutines *

D

Interrupt Service Eoutines

*
cx
D%

Timer_ISR

E*IUU ns time interwval using TCO
Prescaler: ~7
Count interval:

6250

Requires initial sstup

;*klso requires a 16-bit warisble called TimCounter

EEE N

Timer_ ISE:
ES]

ET TFLG1,%00000001
#6250

ADDD TCO
STD TCO
1DD TimCounter
ADDD #1
STD TimCounter
JSE SevSeq_Topd

.clear interrupt flag
:place counter delay value in D

‘add old event targst
:new event target

;increment the counter wariable

;display the new value

D

;#Feceives a character from the keyboard and echoess it to terminal

SCI_Echo ISR

‘*Requires an initialization routine for the SCI port

SCI_Echo_ISE:
ESE

T SCIOSRL, 00100000

:clear interrupt flag

®

LDAA SCIODRL ireceive character

JSR SCI0T=BEyte

RTI

Switch_ ISR *

‘#Responds to a press of the Portd switch

*

Switch_ISR:

EBSET
10D
STD
RTI

PIFT,%00000001
#0

TimCounter

:clear interrupt flag
sready to blank top display

Comstants

ORG ROM_C000Start

;second block of ROM

Look-Up Tables

SCI VT100 Strings

Absolute Library Includes

INCLUDE "Misc Lib. in
INCLUDE "SCI0_Lib.inc"
INCLUDE "SewSeg_Lib inc"

Interrupt Vectors

ORG $FFDE

oc.w SCI_Echo ISR
ORG SFFCE

oC.w Switch ISR
ORG SFFEE

DCow Timer_ ISR
ORG $FFFE

DC.w Entry

;SCI0 SCILCRZ

;Port J

(TIE C01

:Reset Vector

| NCP1503

Topic 3

Page 111 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Interrupts using ANSI C

Interrupt handling in ANSI C is different from handling interrupts in Assembly Language, as
we rely on something called pragma interrupt handling. Also, since we’re not allowed to
pass parameters to or from an interrupt (remember that everything gets stacked upon entry
and then everything gets pulled back off the stack at the end of the ISR), we'll have to use
global variables for anything we want to send to or receive from an interrupt routine.

Recall that there are seven things we need to do to handle an interrupt properly:

1. Write the interrupt service routine (ISR), preferably collected with other ISRs under
a header that sets them apart from the rest of the code.

2. Start the ISR with an informative label that the compiler will interpret as the entry
address.

3. Inside the ISR, make sure you clear the interrupt flag that brought you here. That

usually means writing a “1” to that flag in the associated flag register.

Make sure you exit the ISR properly (not so hard in C).

Associate the ISR with the appropriate Interrupt Vector.

In the initialization of your program, enable the specific interrupt for this routine.

Enable the maskable interrupts.

Nowu s

For the SCI port, the most useful interrupt is the Receive Data Register Full (RDRF), which
we have used in our polling routines. Since people type pretty slowly, compared to the
processing rate of a microcontroller, and since people tend to take relatively long breaks to
think about what they are typing or to get a coffee, leaving the microcontroller in a blocking
routine while it waits for a new character is an incredible waste of time and computing
power.

If you don’t want to try and find the Vector Handlers in the 1300 page data sheet, you can
open up the "mc9s12xdp512.h” file that always shows up in your projects when you make
the correct initial selections. Here’s a snippet out of that file, which should be generally
useful for the interrupt-driven parts of this course.

TS L LIS ¥ S L L LWL Y L LI AR

#define VectorHumber Vporth 2510
#define VectorHumber Vportj 240
fdefine VectorHumber Vatdl 230
#Fdefine VectorHumber Vatdld 2210
fdefine VectorHumber V=cil 210
fdefine VectorHumber V=cil 201
fdefine VectorHumber V=pil 191
#fdefine VectorHumber Vtimpaies 1810
#define VectorHumber Vtimpaaowi 170
fdefine VectorHumber Vtimowi 1611
#define VectorHumber Vitimch? 1510
fdefine VectorHumber Viimche 140
#define VectorHumber Vitimchb 131
fdefine VectorHumber Viimchi 1210
#define VectorHumber Vitimchi 111
#define VectorHumber Viimch? 101
fdefine VectorHumber Viimchl a1
#define VectorHumber Vitimchi au
#Azf i nae Vot ceHomhae Vet 4 71

Here are some important facts to use in setting up an SCIO Receive interrupt routine:

e SCIO interrupts are handled by “VectorNumber_Vsci0”. (Be careful, as the cross-
compiler is case sensitive.)

RDRF is bit5 of SCIOSR1.

Flags are cleared by writing a 1" to them.

The receive interrupt enable, RIE, is bit5 of SCIOCR2.

The interrupts you’'ve selected are ultimately enabled using “Enablelnterrupts”, which
is the equivalent of “CLI".

e You can use “asm WAI" to put the microcontroller to sleep, waiting for an interrupt.

| NCP1503 Topic 3 Page 112 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Points 2 to 5 of the things that are needed for an interrupt-driven program are done for you
in the following screen capture. Notice, in particular, the syntax of the declaration of the
vector handler and its associated interrupt service routine — the top line of this code. The
function is void(void) because everything is placed on the stack and retrieved from the
stack. If you want to have the ISR work on values or provide results, use global variables
as the memory access points.

363636 36 36 36 36 36 36 36 36 36 36 IE 36 36 36 3636 36 36 IE 36 36 36 36 36 36 36 IE 36 36 I 3636 36 36 IE 36 36 36 3636 36 36 36 3636 6 3636 36 3636 3636 I 3636 363636 3636 IE I

* Interrupt Serwvice REoutines
3636 3 36 I 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 IE 36 36 36 36 36 I6 6 6 I 36 36 36 36 36 36 I3 36 36 36 36 36 36 36 36 36 36 36 36 36 I I I I

interrupt VectorHumber V=cil woid SCI_Echoiwoid)

SCINSEL|=0b00100000; ssclear the flag
Soput wvour code here

#3636 36 36 36 36 3636 36 36 36 36 36 36 36 36 3 36 36 36 3E 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3636 36 36 3636 36 36 36 36 363636 36 36 363636 36 I 36 36 363K

At this point, you should be able to write an ANSI C equivalent of the “receive and echo”
program shown earlier in S12XCPU Assembly Language.

By the way, you may have noticed that, in one of the ISRs the flag was cleared at the
beginning of the routine and in the other the flag was cleared at the end. This doesn’t
matter with Motorola-based microcontrollers, as the interrupt is automatically disabled as
long as the interrupt is being serviced.

Don’t forget points 6 and 7! They need to be done outside of the ISR.

| NCP1503 Topic 3 Page 113 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Input-Driven Interrupt
Often, we want our microcontroller to respond to simple external events, such as can be
detected by a logic change on an input.

On our board, Port J can be used to generate interrupts in response to a change in the
signals connected to it.

The microcontroller board has PortJO and Port]1 connected to push-button switches. Of
course, you could also wire one or both of these to a circuit of your own design, or an add-
on peripheral, that generates binary logic levels as external interrupts.

The following is from page 819 of the “"Data Sheet”:

0x0268 Port J Data Register (PTJ) Read / Write!
0x0269 Port J Input Register (PTIJ) Read

0x026A Port J Data Direction Register (DDRJ) Read / Write
0xD26B Port J Reduced Drive Register (RDRJ) Read / Write
0x026C Port J Pull Device Enable Register (PERJ) Read / Write'
0x026D Port J Polarity Select Register (PPSJ) Read / Write!
0x0D26E Port J Interrupt Enable Register (PIEJ) Read / Write!
0x026F Port J Interrupt Flag Register (PIFJ) Read / Write

In order to use Port]O and/or Port]1, we need to define them as inputs, using DDRJ.

Also, we need to specify if we want interrupts to be generated on a rising or falling edge of
the input signal using PPSJ, where 0 is for a falling edge and 1 is for a rising edge.

Once the port is set up, we can enable the interrupt for our particular channel using PIEJ].

Interrupt events will be reported using PIF], which will have to be cleared before further
interrupts can be detected.

The Interrupt Vector for Port] is $FFCE, and the Interrupt Vector Handler for ANSI C is
VectorNumber_Vportj.

There are some distinct advantages to using an interrupt service routine for binary input
signals, particularly if they are generated by switches.

For one, we don’t need to worry about long activation time for the switch, because a single
event gets us into the service routine, and further events won't have any effect until we
clear the interrupt flag and exit the ISR. Holding the switch down doesn’t generate any
more edges, so no further action is detected until the switch is reactivated. Also, events are
only initiated by the edge we’ve chosen, so, for example, if we've chosen a rising edge to
detect switch press, the falling edge for the switch release condition will be ignored.

Switch bounce is also significantly reduced, as the switch will probably stabilize during the
operation of the interrupt service routine. If your switch bounces upon release, however,
you may get an unwanted event after the service routine has finished its operation, which
you may need to find a solution for. This will probably vary from one application to another.

| NCP1503 Topic 3 Page 114 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Accurate Timing

Up to this point, you've created simple but not necessarily very accurate timing delays using
counters and loops. There are better ways to do this!

Periodic Interrupt Timer (PIT)

If all you're looking for is something to clock a repetitive sequence very accurately, the
Periodic Interrupt Timer is a good choice. As the name indicates, this timer runs on
interrupts, and, when set up properly, will run an interrupt service routine at exact, periodic
intervals. The specification document for the 9512XDP512 provides this block diagram:

Micro Time X Interrupt 0
- —
8-Bit Base 0 _'D 168t Timero —MEOUL0 | jnverrace Trigger 0
Bus Clock | Micro Timer 0 _ >
] Interrupt 1
| Time-Out 1 E——
,_«D 168t Timer 1 | MU interface [rigger 1
8-Bit Micro Interrupt 2
" ) Time " p
Micro Timer 1 . Time-Out 2 F—
Base 1 ,_«D 16-Bit Timer2 —————= > Interface | Trigger 2
I = Interrupt 3
- >
4D 168t Timer3 | 1MEONS | ertace [riggers
—

Figure 13-1. PIT Block Diagram

From this, we can see that there are two 8-bit counters (“Micro Timers”) running from the
8 MHz bus clock. Each of these can be loaded with a different countdown value using
registers PITMTLDO and PITMTLD1. These counters can be connected to any of four 16-bit
timers using a multiplexer register (PITMUX), and these counters further divide down the
clock signals, based on values loaded into PITLDx, where “x” is 0 through 3. When these
counters run down, the generate interrupts that can be detected by the 9512 core.

To determine the period of a particular PIT timer, use the following formula:
T =(PITMTLDy +1)*(PITLDx +1)/ f,

The frequency, if you want it, is just the inverse.

We won't use any more than one interrupt timer at any given time in this course, because,
the way the 9S12XDP512 is set up, it can’t respond to more than one interrupt at a time,
and it’s quite difficult to set up two timers that don’t occasionally fire on the same clock
cycle, in which case the lower priority interrupt will be missed. (If you're interested, the
priority of interrupts and ways to handle nested interrupts are discussed in the specification
document and ad nauseum online.)

The registers you will need to deal with for simple operation of a single channel, in this
case, channel 0 based on microtimer 0, are as follows:

PITCE four lower bits enable corresponding channels

PITMUX a 0 or 1 in the bit matching your channel connects to microtimer 0 or 1
PITCFLMT PIT control register (upper three bits enable, control debug activity)
PITINTE 1 in lower four bits enables corresponding channel

PITMTLDO microtimer count down value

PITLDO timer count down value

The interrupt vector for Channel 0 is VectorNumber_VPit0.

The next page shows a 1.0 s periodic interrupt timer running a BCD counter on the seven
segment display. Just remember, when setting up your values, that the microtimer is 8-bit
(0 to 255) and the timer is 16-bit (0 to 65,535).

| NCP1503 Topic 3 Page 115 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

P i A E R R EEEEEE RS EEEEEE LR EE R R

* YVariables

HAKKH A KKK A KKK ALK K AL KK HA XTI AR T I AR A KA XK KA AR KNI XXX I AX X I A XX I E XX T H AR H I AR T A

unsigned int CountT = 0;
vold main(wvoid) S/ main entry point

_DISABLE_COP():

/*********************9(9(9(9(9(9(9(9(9(9(9(9(9(9(9(9(9(9(9(9(9(9(*************************
* Initializationg

LA SRS S RS EE AR EE R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEI

SevSeg_Init();

PITCE |= 0b00000O0OL: ssenable FPITO0 Ochannel
PITMUX &=0b11111110; ssconnect PITO to microtimer 0
PITCFLMT = 0bl0l100000; »~Enable, /StopOnWait, StalllnFreeze, ;00 (don't force load)

PITINTE |= 0b00000001: ~~venable PITO interrupt
PITMTLDO = 159; ssmicrotimer 0 set to 20 us (159+1)*125 ns
PITLDO = 48999; s7/top digplay updates every 1000 ms (49999+1)%20 us

Enablelnterrupts;

for (::) #sendless program loop

1
/*********************)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)\’************************
* Main Program Code
********************************************************************/

asm WAL : sswalt for interrupt

CountT++; ssincrement counter

if(CountT>999%) CountT=0; ssroll over at 9999

cevseg_Topd (HexToBCD(CountT)): ~~/digplay wvalue
}

1

/***********************)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)Y)\’************************
* Interrupt Service Routines

LA SR RS SRS SIS E R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE I

interrupt VectorMumber_ Vpit0 wvoid PITOInt (wvoid)

PITTE |=0b0000000OL; ssclear PITO interrupt flag

| NCP1503 Topic 3 Page 116 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Enhanced Capture Timer

For more control (and the possibility of connecting timer channels to output pins), the
9S12XDP512 chip contains a built-in enhanced timer module, with a great deal of
functionality and flexibility. The block diagram for the timer module is in the 9512X data
sheet. In the current version, this is on page 310. Here it is for quick reference:

Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)

713 Block Diagram
Bus Clock ————{ - > Prescaler Chanr:el [Ilt —
nput Capture
'—4—1- 10C0o
16-bit Counter Output Compare >
Channel 1
Input Capture <_’_ 10C
Modulus Counter 16-Bit Modulus Counter Output Compare |
Interrupt
Channel 2
Timer Overflow Input Capture j—q—r 10C2
Interrupt <——— Output Compare
Timer Channel 0 Channel 2
Interrupt Input Capture } 10C3
. -] Output Compare
E R Registers Channel 4
: - Input Capture
: Output Compare j_H 10C4
: -
X Channel 5
: -
' Input Capture } 10C5
-] Output Compare
Timer Channel 7
Interrupt Channel 6
PA Overflow - Input Capture
- 16-Bit « 3
Interrupt Pulse Accumulator A Output Compare } 10ce
PA Input Channel 7
Interrupt 16-Bit Input Capture ‘—’7
PB Overflow _ -ol «—> |0OC7
Interrupt Pulse Accumulator B Qutput Compare s

Figure 7-1. ECT Block Diagram

In other versions of the 9512 microcontroller, there are multiple enhanced capture timers
available. However, in the MC9S12XDP512, the manufacturers made room for multiple CAN
Bus modules by removing all but one of the timer modules. In those versions of the
controller, you need to specify which module you want (e.g. TIM0_?????). We don't have to
do that with this version of the controller.

At the core of the timer module exists a 16-bit counter, the current count value being
available at the 16-bit location TCNT (for us, this is at addresses 0x0044 and 0x0045). This
counter simply counts up as long as the timer module is enabled. The points of interest
here are that this is a 16-bit register (occupies two bytes), and a 16-bit read takes an
instantaneous snapshot of the register’s contents, while the counter itself runs on.

| NCP1503 Topic 3 Page 117 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

There are a number of registers that need to either be written to for control or read from to
determine the current status of the timer module. Here’s a screen-shot showing all of the
available registers. Pretty daunting!

Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2) Chapter 7 Enhanced Capture Timer (§12ECT16B8CV2)
7.3 Memory Map and Register Definition Table 7-1. ECT Memory Map (continued)
This section provides a detailed description of all memory and registers. Ag;;e:ts Register Access
7341 Module M M 0x001E | Timer Input Capture/Output Compare Register 7 High (TC7) RW3?
-~ odule emory Map 0x001F | Timer Input Capture/Output Compare Register 7 Low (TC7) RW*
The memory map for the ECT module is given below in Table 7-1. The address listed for each register is 0x0020 | 16-Bit Pulse Accumulator A Control Register (PACTL) RIW
the address offset. The total address for each register is the sum of the base address for the ECT module 0x0021  |Pulse Accumulator A Flag Register (PAFLG) RW
and the address offset for each register. 0x0022 | Pulse Accumulator Gount Register 3 (PACNG) RIW
Table 7-1. ECT Memory Map 0x0023 | Pulse Accumulator Count Register 2 (PACN2) RIW
0x0024 | Pulse Accumulator Count Register T (PACNT) RIW
Ag:’::'s Register Access 0x0025 | Pulse Accumulator Count Register 0 (PACNO) RIW
0x0000 | Timer Input Capture/Output Compare Select (TIOS) RIW 0x0026 | 1681 Modulus Down Sounter Register (MOCTL) alld
50001 [imer Compare Force Regster (GFORG) ETT 0x0027 | 16-Bit Modulus Down Counter Flag Register (MCFLG) RIW
070005 Output Compare 7 Mask Regiter (0GTH) T 0x0028 | Input Control Pulse Accumulator Register (ICPAR) RIW
n0005 | Oulput Compars 7 Dafa Regisier (OC7D) o 0x0022 | Delay Counter Control Register (DLYCT) RW
00004 [Timer Gount Regiter Figh (TGNT) ETe 0x002A | Input Conirol Overwrite Register (ICOVW) RIW
530005 Timer GomnT Register Low (TONT) o 0x0028 | Input Conirol System Control Register (ICSYS) RW?
0x0006 | Timer System Control Register 1 (TSCR1) RIW g:gszg :::::‘ Register (TITST) R;\;vz
0x0007 | Timer Toggle Overflow Register (TTOV) RIW
00005 [Timer Gonirol Register 1 (TCTLT) " 0x002E | Precision Timer Prescaler Select Register (PTPSR) RIW
530005 Timer Gonrol Regier 2 (TGTL2) oy 0x002F | Precision Timer Modulus Counter Prescaler Select Register (PTMCPSR) RIW
OX000A Timer Confrol Register 3 (TCTL3) W 0x0030 16-Bit Pulse Accumulator B Control Register (PBCTL) RW
530005 | Timer Conirol Register 4 (TOTLA) Fr 0x0031 | 16-Bit Pulse Accumulator B Flag Register (PBFLG) RIW
5x300C | Timer Interupt Enabie Regiter (T1E) o 0x0032 | &-Bit Pulse Accumulator Holding Register 3 (PA3H) RAWS
5x0000[Timer System Gontrol Register2 (T55R2) ey 0x0033 | 8-Bit Pulse Accumulator Holding Register 2 (PA2H) wa:
GXO00E | Main Tmer iterrupt Flag 1 (TFLGT) S 0x0034 | &-Bit Pulse Accumulator Holding Register 1 (PATH) ng
OX000F | Main Timer interrupt Flag 2 (TFLG2) ey 0x0035 | &-Bit Pulse Accumulator Holding Register 0 (PADH) RIW
0x0010 | Timer Input Capture/Output Compare Register 0 High (TCO) RAW- 0x0036 | Modulus Down-Counter Count Register High (MGCNT) R
0x0011 | Timer Input Capture/Output Compare Register 0 Low (TCO) RAW3 0x0037 | Modulus Down-Gounter Gount Register Low (MCGNT) RN
0x0012 | Timer Input Capture/Output Gompare Register 1 High (TG1) RW 0x00%6 _ | Timer Input Gapture Holding Register 0 Figh (TOOF) waﬁ
0x0013 [ Timer Input Capture/Output Compare Register 1 Low (TC1) RW? 0x00%9 | Timer input Caplure Holding Register 0 Low (TCOM RfWS
0x0014 | Timer Input Capture/Output Compare Register 2 High (TC2) W3 O003A | Timer Input Capture Holding Register 1 High(TG1H) WW5
0x0015 | Timer Input Capture/Output Compare Register 2 Low (TC2) RIW? 0X0035 | Timer Input Gapture Holding Register 1 Low (TETH) R’W5
0x0016 | Timer Input Capture/Output Compare Register 3 High (TC3) RAW- Z:zzzg E:: ::Z:: EZZ:SZ :Z::::S ;Zgz:z i Tﬂ‘i:‘gg;’ 2%5
0x0017 | Timer Input Capture/Output Compare Register 3 Low (TC3) R
0x0018 | Timer Input Capture/Output Compare Register 4 High (TC4) RAW3 O003F | Timer Input Capture Holding Register 3 High (TC3H) RfW5
0x0019 | Timer Input Capture/Output Gompare Register 4 Low (TC4) RW? g OX003F_| Timer Input Capture Holding Register 3 Low (T3 W
0x001A | Timer Input Capture/Output Compare Register 5 High (TC5) RS ) Always read 0x0000
3 Only writable in special modes (test_mode = 1).
0x0018 | Timer Input Capture/Output Compare Register 5 Low (TC5) R 3 Wirites to these registers have no meaning or effect during input capture.
0x001C | Timer Input Capture/Output Compare Register 6 High (TC6) RW? 4 May be written once when not in testodmode but writes are always permitted when testaomode is enabled
0x001D | Timer Input Gapture/Output Gompare Register 6 Low (TG6) RIW' 5 Writes have no effect
MC9S12XDP512 Data Sheet, Rev. 2.21 MC3S12XDP512 Data Sheet, Rev. 2.21
312 Freescale Semiconductor Freescale Semiconductor 313

Clearly, we can only touch on a small subset of all the capabilities of this very important
module, so let’s get started.

Initially, we will be working with seven of the registers:

TSCR1 Timer System Control Register 1

TSCR2 Timer System Control Register 2

TIOS Timer Input Capture/Output Compare Select

TCTL2 Timer Control Register 2 (This is half of a 16-bit TCTL register)
TCNT Timer Count Register

TCO Timer Input Capture/Output Compare Register 0

TFLG1 Main Timer Interrupt Flag 1

Once we have the timer working, you might be interested in checking out the functionality
of Input Capture, which requires TCTL3 and TCTL4, and reports the clock value when an
external event happens. You could also try Pulse Accumulation, which requires PACTL and
the 16-bit Pulse Accumulator Count register PACN32, and counts the number of external
events detected during a period of time. Input capture can be used to determine the
period of a periodic waveform, whereas pulse accumulation can be used to determine the
frequency of a periodic waveform. Of course, there are a lot of other applications for
these, too, such as determining revolutions per minute (RPM) of a rotating shaft or the time
between two external events such as the time between front tires and back tires of a car
crossing a sensor to determine its speed.

| NCP1503 Topic 3 Page 118 |




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

Timer Initialization
To initialize the timer, we need to do the following:

1. Enable the timer module.

2. Determine the rate at which we want the timer to count up, based on a prescaler

from the main bus clock.

3. Set up the timer to operate in "Output Compare” mode for one of the 8 channels -

for now, we'll use 10CO.
4. Connect an output signal to an external pin available on the microcontroller kit.
5. Clear the Output Compare Flag so the timer is ready to announce the first Output
Compare instance.

Here are the registers we'll be working with in the initialization for Output Compare on

Channel I0CO:

TSCR1 R 0 0 0
w| TEN TSWAI TSFRZ TFFCA PRNT
TSCR2 R 0 0 0
W TOI TGRE PR2 PR1 PRO
TIOS R
w| 1087 I0S6 1085 1054 10S3 I10S2 10S1 I0S0
TCTL1 R
wl o om7 oL7 OME OL6 OM5 oL5 om4 oL4
TCTL2 R
Wl oms oL3 oM2 oL2 OM1 OL1 OMO oLo
TCNT (High) R
| TCNT1S | TCNT14 TCNT13 | TCNTI2 TCNT11 TCNT10 TCNTS TCNTS
TCNT (Low) R
" TCNT7 TCNTG TCNTS TCNT4 TCNT3 TCNT2 TCNT1 TCNTO
TCO (High) R _ ] _ ] _ ] ] _
w Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
TCO (Low) R
W Bit 7 Bit6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit D
TFLG1 R
W C7F CEF C5F CAF C3F C2F C1F COF
For our basic initialization routine, we want to do the following:
1. Turn on the timer.
2. Set the prescaler so that the timer’s count interval is 8 pys (to begin with).
3. Set up Channel 0 for Output Compare.
4. Connect Channel 0 to its corresponding pin in PortT, PTO, in Toggle Mode.
5. Clear the capture flag for Channel 0.
| NCP1503 Topic 3 Page 119 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

In your “Misc_Lib.c” library, begin a function to match the following header which should be
in the corresponding “Misc_Lib.h" file:

void TimInit8us(void);

1. Turn on the Timer using TSCR1, but dont mess up the contents of the other bits in
this register. (You’ll need to OR or AND the contents of the register for this).

2. In TSCR2, you’ll notice that there are only three bits available for the prescaler.
These bits represent the power of 2 that you want to divide the clock frequency by.
Your options, then, are 1, 2, 4, 8, 16, 32, 64, or 128. Dividing the clock frequency
means the same as multiplying the period, so this is also the power of 2 that you
multiply the 125 ns clock period by. So, for the desired 8 us, we want:

85 _ 64— 28
125ns

...s0 the prescaler should be 6, or 110o.

You will need to create this prescaler without messing up the other bits, so
"OR"” in the 1s, and "AND" out the 0s.

Alternatively, you could store the entire thing temporarily, clear out the prescaler
bits in the temporary copy, write the desired values into the prescaler, then OR the
original bits back into the register. You’ll probably find the first way of doing this to
be the easier of the two.

3. Set up TIOS to enable Output Compares on Channel 0. Consistent with other
operations in this microcontroller, a 1 represents output and a 0 represents input.
Again, don’t mess up the other bits in this register.

4. Now to connect Channel 0’s Output Compare events to a pin that we can monitor
with an oscilloscope. Notice that the TCTL register is 16-bit, even though there are
only 8 channels. That's because each channel has four options available to it, hence
the need for 2 bits. Here’s the table that explains this operation:

Table 7-10. Compare Result Output Action

OMx OLx Action
0 0 Timer disconnected from output pin logic
0 1 Toggle OCx output line
1 0 Clear OCx output line to zero
1 1 Set OCx output line to one

We want to toggle PTO in response to events on Channel 0, so we want to use 012
for the bottom two bits of TCTL2. Again, we don’t want to meddle with the settings
of the other bits in TCTL2, so this will require AND-ing and OR-ing.

5. Finally, we want to clear the interrupt flag associated with Channel 0. For many
peripherals, a flag is “cleared” by “setting” it. In other words, to make a flag go to O,
you write a 1 to it. Do this to the appropriate bit in TFLG1 using OR.

| NCP1503 Topic 3 Page 120 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

If you followed the steps above, you should have ended up with a function that looks very
much like the following:

wold TimInit8us{woid)

{
TSCR1 |= 0bl0o000000; <«enable timer module
TSCRE2 &= 0b11111000; sszet prescale to Bus-s64d (8 us per ticlk)
TSCRZ2 |= 0bOO0O0OO110; S continued
TIOS |= 0bOOOOQOOL; ss=zet I0S0 to output compare
TCTLZ &= 0b11111100; s<zet PTO to toggle mode
TCTL2 |= 0bOO0OOOOOL; S continued
TFLG1 |= 0bOO0OOO0DOD; ssolear flag
h

Hopefully, you took the time to go through the preceding steps instead of looking ahead and
just putting this code into your library, because in doing so, you will have learned quite a bit
about the operation of the timer.

At this point, you should be able to use an oscilloscope to see if your initialization routine
worked, because PTO will be changing states once for each complete cycle of the count in
TCNT.

Why? Here’s a quick explanation. A register called TCO is compared to TCNT each tick to
determine if an output compare event has occurred on this channel. Since the TCO register
will be some unspecified value upon startup (most probably $0000), an output compare
event will occur naturally each time TCNT wraps around to that value. This happens every
65536 ticks at 8 ps sec/tick, or every 0.524288 s. So, without us manipulating the value in
TCO, the board will produce a square wave with a period of 1.048576 s, or a frequency of
0.954 Hz. Check to see if that's what’s happening at PTO, by observing the signal at Pin 9
of the microcontroller using your oscilloscope.

We will typically manipulate the amount of time between output compare events by
changing the contents of TCO for every desired time period.

If your 8 ps initialization routine worked, add an initialization routine called “TimInitlus”.
This should be very similar to the one you’ve just finished, except for the timing. Make
appropriate changes to match the label. This one should produce a free-running frequency
of 7.63 Hz.

Add another routine called “"TimInit125ns”. This one should free-run at about 61 Hz.

Setting the Timer Compare Event Duration

Every time TCNT matches TCO, the corresponding flag is set in TFLG1. If you want to know
when an output compare event has occurred, poll for the event flag in the TFLG1 register.
Another way to handle this, which we will soon investigate, is to enable interrupts and allow
the timer to interrupt the main program whenever the flag is set.

The simplest way to handle an output compare is to repeatedly check for the flag of the
corresponding channel in your code (a blocking delay). Once the event is detected, you
must write a 1 to the corresponding bit to acknowledge it and reset the flag.

For more useful systems, you should check the flag once each time through a loop that
allows you to carry out other functions, such as checking switches or controlling LEDs.
Alternatively, you could use timer interrupts, which we will soon address.

| NCP1503 Topic 3 Page 121 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Delays vs. Intervals
We can use the timer in two slightly different ways: individual delays or regular intervals.

Here’s a real-life analogy. You may want to sleep an extra ten minutes before getting up in
the morning. To do this, you check the time, add ten minutes to it, and set your alarm for
the new time. When the alarm goes off, you've experienced a ten-minute delay. After
yawning and stretching, you may feel like another ten-minute delay, so you check the clock
again, add ten minutes, and set the alarm to the new alarm time. As a result, your alarm
will go off a bit more than twenty minutes after the original wake-up time. If, however,
you've got kids playing in the back yard, you may want to check on them every ten
minutes. In this case, you check the initial time on the clock and add ten minutes to it to
set the alarm. When the alarm goes, you set the alarm to ten minutes past the old alarm
setting (even if you get distracted in between), and as a result you end up checking on the
kids exactly six times for every hour, since the alarm goes off in ten-minute intervals
regardless of how long it takes you to get around to resetting the alarm (assuming you get
to it within ten minutes, that is). We'll get back to the difference between these two ways
of handling a timer, but we need to know a couple more things first.

Delays

Specific timing delays can be generated by looking at the current TCNT value and adding an
offset that matches the desired delay time. If you write this value into the TCO register, the
event will occur at precisely the desired delay time. With a delay, the amount of time
required to set up the delay and access it would be additional to the time spent waiting for
the timer, but, unless the delay is extremely short, this is probably insignificant.

Intervals

First, we get the initial value in the counter to set a new target. Then, each time we detect
an output compare, we add the value to the previous target event value instead of to the

current timer value. Since we add the count interval to the previous event value and not to
the current clock value, our interval will be accurate even if we don't service it immediately.

With the timer, we can perform other tasks of varying length while we wait for the output
compare event to occur. This becomes especially useful when use Interrupt Service
Routines. Since interrupts and interval timing work so well together, we’ll leave a full
discussion of interval timing until later in the course.

Delay Function for Misc_Lib
In your “Misc_Lib.h" header file, you will find the following prototype:

void Sleep ms(unsigned int); //requires TimInit8us setup; blocking delay

This function is appropriately called “Sleep”, because it will block and wait until the time
interval has elapsed - nothing else, other than interrupt-driven behaviour, will happen once
this function has been called, until the timer runs out. Unfortunately, the micro doesn’t
actually go into low power “sleep” mode, because it's madly checking the timer module!

Here’'s some information necessary to completing this function:

e 1 ms represents 125 8 ps timer ticks.

e Since we don’t know what value is present in the counter (TCNT) when we access
this routine, we will need to read that and add one millisecond (125 counts) to it for
the first interval.

e Once the first interval is set up, we can enter a for loop to handle the rest of the
milliseconds, in which we will clear the flag, wait for it to trigger, and add 125 to the
previous target present in the timer compare register (TCO).

| NCP1503 Topic 3 Page 122 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Again, you can check your work against the following solution:
void Slesp n={unsigned int 1Times) Soerequires TimInitSus()

un=igned int iCount:

TCO=TCHT+125; Ssfirst target —— 125 counts at 8 us = 1 ns
for (iCount = 1;iCount<=iTime;iCount++)

TFLG1 |= 0b0O0OOO0DOOL:; ssclear flag

while( {TFLG1&0bL0000000L)Y==0); S/BLOCKING wait for flag

TCO+=125; sosnext target — based on previous target for accuracy
1

¥

A good test of this routine would be to set up the program to toggle all three LEDs on the
board after a delay. With an oscilloscope, you could probe the control line for one of the
LEDs to see if the timing is what you expect it to be. Try values like 1 ms, 2 ms, 10 ms,
100 ms, 1000 ms, and 65000 ms (if you can wait that long!). Your results should be
accurate to within the limitations of your oscilloscope.

Notice in the Sleep_ms() routine that the first value for TCO comes from TCNT, because
when you enter a Delay, you don’t know what the starting time is. Consequently, there will
be a small period of time lost between when you call this delay and when it actually starts,
so repetitive calls of this routine will run a bit more slowly than a true interval timer.

However, notice that inside the loop, the subsequent values are based on the previous
contents of TCO. That makes these true Intervals, because they are not affected by the
processing time for managing the loop.

Interrupt-Driven Timer

Having an interval timer running on interrupts is a great idea. Your program can carry out
any number of tasks, either dependent on or independent of the timer, without needing to
poll the timer module to see if the interval is over.

The following example creates an interrupt-driven timer on Timer Channel 0. For an
S12XCPU Assembly Language version of this code, look back to the code following the
introduction to interrupts for the SCI receive operation.

Here are steps 1 to 5, written into the part of the skeleton file dedicated to ISRs:
/~k~k~k~k*****~k******************~k~k~k~k~k~k*~k**~k****~k~k***********************/

// Interrupt Service Routines
/********************************************************************/

interrupt VectorNumber Vtimch0O void TimerInterval (void)
{

TCO =(int) (iTimeVal+TCO) ; // next time

TFLG1 |= 0b00000001; // acknowledge interrupt
}
Notice the declaration statement in the top line: “VectorNumber_VtimchQ0” is interpreted by
the compiler using the MC9S12SDP512.c file to point to the correct interrupt vector for
Timer Channel 0. “TimerInterval” is the name of our ISR. Notice it is “void (void)”, since
we can't pass parameters to or from it.

We tell the compiler to cast the result of “iTimeVal+TC0"” to int, because the compiler knows
the result could be bigger than two bytes, and will give us a warning otherwise.

After clearing the flag, we simply end with a curly bracket, and the compiler knows to use
RTI to end the routine. So, that’s five out of the seven requirements.

| NCP1503 Topic 3 Page 123 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Back in the main program, we need to enable the interrupts (steps six and seven), and we
also need to make sure the iTimeVal variable is global.

TIE |= 0b00000001; /*enable channel 0 interrupts*/
EnableInterrupts;
Now for the iTimeVal variable: As it sits, it is a global variable, so we should be able to use
it without any changes. However, in case there’s a chance it could be changed by the
program during operation, it might be wise to put “volatile” in front of “int” to prevent it
from being mangled by an interrupt occurring while it is being changed.

The following endless loop watches for the press of the MID switch, one check per timer
cycle, as established in the ISR on the previous page:
for (;;)
{
//main program loop
if (SwCk ()==0b00000001)

{
PT1AD1&=0b00011111;

PT1AD1+=0b00100000;

}
asm WAI;

}

The "WAI” command puts the micro to sleep, waiting for the next interrupt from the timer.
Unlike an endless loop, the WAI command actually puts the microcontroller into a low-power
state, so it conserves energy, which is particularly important for a battery-operated
application.

The following page shows the code snippets discussed above all together as a single
printout.

| NCP1503 Topic 3 Page 124 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

#¥include <hidef h» <% common defines and macros * .
#Finclude "deriwative h” <% derivative—specific definiticons %
- -
S Libraryv includes
- -
#include "SW_LED Lib . h"
- -
S Frototypes
- -
wold TimerSetup(int iTimeVal,bvte bPrescaler):
- -
s Yariables=
- -
wolatile int 1iTimeVal = 62500;
byvte bFrescaler = 0bOOOOO101;
- -
S Lookups
- -
wold main{woid)
A4 main entry point
_DISABELE _COP():
- -
s+ initializations
- -
SU_LED Init{);
TimerSetup(iTimeVal, bPrescaler)
Enablelnterrupts;
for {;:}
1 _
Somain program loop
if {SwCl{)==0b00000001) PT1AD1&=0b00011111; ~*clesr LED=s on HID press*~
el=e FPT1AD1 += 0bO0O100000; s#count up on the LEDs*~
asm WAT:
1
b
- -
s Functions=
- -

wvold TimerSetupf{int iTimeVal,Lbyte bFrescaler)

{

TSCR1 = 0b10O000000D;
TSCRZ? &= 0b11111000;
TSCR? |= bPrescaler:
TIOS |= 0b0OOO0OOOOY;
TCTL? &= 0bl1111100;
TCTLZ |= 0b0OO00OOOOL;

TCO = TCHT + 1iTimeVal;

TIE |= 0bO0000001;
TFLG1 |= 0b000OOO0OYL:

S#turn on timer modulexs

s#ztart by clearing the prescaler bit=*~
<#noy =et the prescaler#s

~#1050 =2t to output compare*s

s#=ztart by clearing bit=s for output to PTO*®~
Szet low bit for TCO for toggle (01) on PTO#*s
~#first interval ==t up*s

~#gnable channsel 0 interrupts*.s

~#zlear TCO flag=s

b

- -
S Interrupt Service Routines

e s

interrupt VectorHumber Vitimch(l void

TCO += iTimeVal:

Timerlnterval (void)

<% nexEt time*s

TFL1 |= 0b0000OO0001;
B

<% gclnovledge the interrupt*s

| NCP1503

Topic 3

Page 125 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Real-Time Loop

(Optional topic) One formalized use of interrupts is Real-Time Loop Multiplexing. Unless
your instructor has extra time available, you probably won’t do an exercise on this yet -
wait until the end of the semester, when you have more peripherals to work with. However,
you should know how this is intended to work.

The idea is to have just one interrupt — a regular timer that establishes the loop interval.
During each interval, a set number of tasks are handled in order, then the microcontroller is
put into a power-down WAIT condition until the interval timer’s interrupt occurs. Here's an
example, shown first in S12XCPU Assembly Language, then in ANSI C.

RTL:
JSR SevSegTask
JSR SecTask
JSR ADCDACTask
JSR VoutTask
WATI
BRA RTL

DR I I b S b b S b b S b S S S b S I e S b S SR e S S S S S Sb e S b e S b e S b e S b S b e S b b S 2
’

;* Timer Interrupt Service Request *
,-****************************k'k'k'k'k'k'k'k'k************************

TIM ISR:

LDD #1250 ;10 ms interval
ADDD TCO

STD TCO ;new interval
BSET TFLG1,%00000001 ;clear interrupt
RTI

The four tasks are in carefully-designed subroutines, and are accessed during each interval.
The "WAI” command puts the microcontroller into a low-power sleep mode, but it still
responds to the timer compare interrupt, which wakes it up and sends it to the beginning of
the real-time loop.

for (;;)

{
SevSegTask() ;
SecTask () ;
ADCDACTask () ;
VoutTask () ;

asm WAT;
}

//***********************************************************

//* Timer Interrupt Service Request *
//********‘k‘k‘k***********************************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k***

interrupt VectorNumber Vtimch(O void TimerInterval (void)
{
TCO += 1250; // next time
TFLG1 |= 0b00000001; // acknowledge the interrupt

| NCP1503 Topic 3 Page 126 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Of course, for this system to work, the total time taken by the task subroutines must be less
than the time interval.

This can be handled two ways.

e One is to make the interval long enough to handle the maximum time required by all
the tasks. Sometimes this is unrealistic, and results in jittery code management.

e The other is to find ways to break up tasks that occasionally have long bursts of
activity into smaller pieces. For example, if one task occasionally sends a long string
of text to a dumb terminal through the SCI port, consider sending the string one
character at a time, or maybe no more than 10 characters at a time, until the entire
string is sent. This would require putting the string into a buffer and keeping track
of the current location in the buffer.

A well-planned real-time loop multiplexing system is the perfect application for a
microcontroller acting as the brains for a repetitive system, such as the “computer controls”
in an automotive fuel injection and ignition system.

| NCP1503 Topic 3 Page 127 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Input Capture and Pulse Accumulation

(Optional topic) The timer pins can be used to provide timing information from outside
events to the microcontroller. There are two ways we might want the microcontroller to
respond to outside events: We might want to know how much time has elapsed since the
last event (Input Capture) or we might want to know how many events have occurred over
a set period of time (Pulse Accumulation).

Input Capture

Input Capture is a very simple procedure. Once a channel is configured as an Input Capture
pin, each time an electrical event occurs on that pin, the current value of the internal clock
is stored in the 16-bit Timer Compare (TCx) register associated with that pin. The usual
initialization steps are required - setting up the clock speed and enabling the clock. In
addition, we need to set up the channel we're using for input capture. This involves TIOS,
which we previously used when we set up our timer channel for Output Compare.

TIOS R
W

1057 1056 1055 1054 1053 1052 1051 1050

This time, we want Channel 7 to be an “Input Compare”, so it should be a 0.

Another parameter that should be controlled is the Input Capture Edge - sometimes you
want to count when the signal goes from LOW to HIGH (rising edge) or when the signal
goes from HIGH to LOW (falling edge). Sometimes, you might want to detect all changes,
rising or falling (incidentally, this would double the frequency of a square wave). This
involves Timer Control Registers 3 and 4 (TCTL3 and TCTL4).

TCTL3 R
EDGYB EDGTA EDGEB EDGEBA EDGSB EDG5A EDG4B EDG4A

TCTL4 R
W EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDGOB EDGOA

There are two bits associated with each channel, since there are four possible options.

Table 7-12. Edge Detector Circuit Configuration

EDGxB EDGxA Configuration
0 0 Capture disabled
0 1 Capture on rising edges only
1 0 Capture on falling edges only
1 1 Capture on any edge (rising or falling)

The Input Capture channel indicates that an event has occurred by setting the
corresponding bit in the Flag register, TFLG1. As usual, you will need to clear this flag
before you can wait for it to appear again.

The following page shows a code snippet that displays the period, in microseconds, of a
signal connected to PT7 (pin 18 of the microcontroller).

| NCP1503 Topic 3 Page 128 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

TimInitlu=();
SevSeg_Init():

TIOS &=0b01111111: ~sput channel 7 into Input Compare mnodes
TCTL34=0b01111111; s« iir=t part of malking channel 7 ri=zing sdge
TCTL3|=0b0O1000000; ~w=s=econd part of making channel 7 rising edge

TFLZ1|=0b10000000; ~~clear the flag

1Start=TCHT: Ssfirst timer reading

for (::3 ssendless program loop
FPE T X P EEEELEEEEE LR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LT
* Main Program Codes

3636 36 36 36 36 36 36 36 3636 36 36 36 I 36 36 36 36 3636363636 36 I I 3636363636 3636363636 36 36 36 36 36 3636 36 I I IE I IE I 36363636 3636363636 3636 I E XL

while( (TFLG1&&0bL1000000O0Y==0); <vwait for rizing edge on channel 7
iDiff= TCY—iStart:

1Start=TC7Y;

SevSeg_Topd (HexToBCD{iDiff)):

TFL:1|=0b10000000; ~~rclear the flag

| NCP1503 Topic 3 Page 129 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Pulse Accumulation

Pulse accumulation means to count the number of incoming events that occur over a time
interval. As you may have deduced from the previous exercise, Input Capture provides
information that directly relates to a signal’s period. Pulse accumulation is the inverse: it
tells us information that directly relates to a signal’s frequency.

To do a pulse accumulation, you will need two timer channels: one to set up the time
period over which you wish to count events, and another to count the events that occur in
that time period.

We'll just use routines we developed previously to set up the required time period, so that
means Timer Channel 0 will be used for that.

For the Pulse Accumulator, there are a number of options. The MC9S12XDP512 has four
8-bit Pulse Accumulators connected to Timer Channels 3 through 0, or, in a different mode,
it has two 16-bit Pulse Accumulators connected to Channels 7 and 0. The easiest one of
these to work with, and the one that doesn’t interfere with our time period counter, is the
16-bit Pulse Accumulator A, connected to PT7. Here is its control register, PACTL:

PACTL R 0

W PAEN PAMOD PEDGE CLK1 CLKO PAOVI PAI
Table 7-18. PACTL Field Descriptions
Field Description
6 Pulse Accumulator A System Enable — PAEN is independent from TEN. With timer disabled, the pulse

PAEN accumulator can still function unless pulse accumulator is disabled.

0 16-Bit Pulse Accumulator A system disabled. 8-bit PAC3 and PAC2 can be enabled when their related enable
bits in ICPAR are set. Pulse Accumulator Input Edge Flag (PAIF) function is disabled.

1 16-Bit Pulse Accumulator A system enabled. The two 8-bit pulse accumulators PAC3 and PAC2 are cascaded
to form the PACA 16-bit pulse accumulator. When PACA in enabled, the PACN3 and PACN2 registers contents
are respectively the high and low byte of the PACA. PA3EN and PAZEN control bits in ICPAR have no effect.
Pulse Accumulator Input Edge Flag (PAIF) function is enabled. The PACA shares the input pin with IC7.

5 Pulse Accumulator Mode — This bit is active only when the Pulse Accumulator A is enabled (FAEN = 1).
FAMOD |0 Event counter mode
1 Gated time accumulation mode

4 Pulse Accumulator Edge Control — This bit is active only when the Pulse Accumulator A is enabled
PEDGE |[(PAEN = 1). Refer to Table 7-19.

For PAMOD bit = 0 (event counter mode).

0 Falling edges on PT7 pin cause the count to be incremented

1 Rising edges on PT7 pin cause the count to be incremented

For PAMOD bit = 1 (gated time accumulation mode).

0 PT7 input pin high enables bus clock divided by 64 to Pulse Accumulator and the trailing falling edge on PT7
sets the PAIF flag.

1 PT7 input pin low enables bus clock divided by 64 to Pulse Accumulator and the trailing rising edge on PT7
sets the PAIF flag.

If the timer is not active (TEN = 0 in TSCR1), there is no divide-by-64 since the +64 clock is generated by the

timer prescaler.

32 Clock Select Bits — For the description of PACLK please refer to Figure 7-70.

CLK[T:0]  |if the pulse accumulator is disabled (FAEN = 0), the prescaler clock from the timer is always used as an input
clock to the timer counter. The change from one selected clock to the other happens immediately after these bits
are written. Refer to Table 7-20.

2 Pulse Accumulator A Overflow Interrupt Enable
PAOVI 0 Interrupt inhibited
1 Interrupt requested if PACOVF is set

0 Pulse Accumulator Input Interrupt Enable
PAl 0 Interrupt inhibited
1 Interrupt requested if PAIF is set

| NCP1503 Topic 3 Page 130 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

We will need to enable Pulse Accumulator A. We also typically need to tell it that we're
going to use it as an Event Counter. We also need to indicate whether it will respond to
rising edges or falling edges, and how we will use the clock source.

Table 7-19. Pin Action

PAMOD PEDGE Pin Action
0 0 Falling edge
0 1 Rising edge
1 0 Divide by 64 clock enabled with pin high level
1 1 Divide by 64 clock enabled with pin low level

Table 7-20. Clock Selection

CLKA1 CLKO Clock Source
0 0 Use timer prescaler clock as timer counter clock
0 1 Use PACLK as input to timer counter clock
1 0 Use PACLK/256 as timer counter clock frequency
1 1 Use PACLK/85536 as timer counter clock frequency

It's fairly obvious that this pulse accumulator can be used in a lot of different ways. We will
just use it in its simplest mode: responding to a rising edge, using the timer prescaler as
the counter clock. At this point, we aren’t using any interrupts, so we’ll inhibit the two
interrupts. Hopefully, you've determined that we want to put the value 0b01010000 into
PACTL (the first bit isn’t used, and is always 0).

Once the Pulse Accumulator is set up, we need to set up our regular clock, clear the
contents of the Pulse Accumulator register, and whenever the clock indicates that the time
period is up, we read the Pulse Accumulator Count Register (16-bit) and reset it to zero for
the next count. The Pulse Accumulator Count register is the 16-bit combination of PACN3
and PACN2. In the mc9s12xdp512.inc file, they provide us with the option of doing a 16-bit
read of PACN3 or, with the same functionality, PACN32, an alternate name that probably
helps you remember it's a 16-bit register. Here’s a bit of code that counts events on PT7
(pin 18) for a full second, then displays the frequency, in Hz, on the seven segment display.

33636 33636 36 363636 36 363636 36 363636 36 363636 36 363636 3 363636 36 33636 36 363636 36 363635 36 363636 36 363636 3 33636 36 3636 36 36 363636 36 3636 36

* Initializations
-

SevSeg Init();
TimInitBus();

FACTL=0L0O1010000; Serizing edge event counter using timer prescaler
for (::) ssendless program loop
#

* Hain Program Code
363636 36 363636 36 363636 36 363636 36 363636 36 3636 36 36 3636 36 36 363636 3 363636 36 363636 36 363636 36 363636 36 363636 36 363636 36 3636 36 36 3636 36 I X XN

FACHIZ=0; ssclear counter
Sleep_m=({1000}% ;
SevSeq Topd (HexToBCD(PACHIZ))

]

| NCP1503 Topic 3 Page 131 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

A To D Conversion

The 9S12XDP512 has two fairly complex Analog to Digital Conversion blocks. Here’s the top
left corner of the block diagram, which we’ve looked at previously.

VRH [ VRH [*— VRH

ATDO VgL | ATD1 VgL |<— VgL

Vbpa [ Vopa [*— Vppa

Vssa [ Vssa [ Vssa
ANO (<« J=>PADOO ANS |« | PADOS
AN1 (= 8 > PADO1 AN9 |- <> PADO09
AN2 | < (e PADO2 AN10 |- <> PAD10
AN3 [ g > PADO3 AN11 |- > PAD11
AN4 (= 9( > PAD04 AN12 (= > PAD12
ANS5S [ % > PADO05 AN13 |« 5 <> PAD13
ANG [« A |=>PADO0G AN14 |« < |« PAD14
AN7 (= > PADOQ7 AN15 (= ff <> PAD15
AN16 |- 2 l«>» PAD16
Enhanced Multilevel AN17 < % <> PAD17
Interrupt Module AN18 |« A <> PAD18
AN19 |- > PAD19
AN20 |- > PAD20
F’eripher;(l%ggrocessor AN2T 1= <> PAD21
AN22 |- > PAD22
AN23 |- > PAD23

Notice that PADOO to PADOQ7 are associated with ATDO, and PADO8 to PAD15, the pins that
are connected on our board to the LEDs and Switches, could also be attached to ATD1. So,
of the two available converters, we're going to be using ATDO.

This peripheral is highly configurable, and can do a lot of things. Again, we’ll just scratch
the surface of its capabilities.

Here are some of its features:

e It can run in single input or multiplexed input mode. In other words, it could be
measuring up to 8 external voltages simultaneously.

e It can sample on command or it can operate in continuous scan mode. This means
you can either ask for a sample and wait for it, or you can have samples available all
the time for faster reading.

e You can ask for multiple samples from one channel, one sample from each of the
channels, or a number of samples from a number of channels (within limits!).

e You can choose where the results end up, since the result registers aren't directly
tied to the input channels. In one mode (FIFO) it continuously wraps through the
channels placing the next available value in the next output register; in another
mode, it always starts at result channel 0 and runs until it gets to the last result
you‘ve asked it for; it can also start filling at a result register of your choice,
wrapping around until it gets to the last result you've asked for.

e Sampling can either be clock driven or initiated by external trigger events.

e The results can be either 10-bit or 8-bit. 10-bit is better: just remember to read a
two-byte word to get the result!

e The reference voltages, both top and bottom, can be set using external circuitry. In
our case, VrL is grounded, and VrH is connected to the output of a REF02 that has a
trimmer potentiometer connected to it. We'll set this to 5.120 Vbc to provide a nice
step size.

e The sample rate is selectable. Fast sample rates allow for high-speed signals, but
slow sample rates are more accurate.

e The input buffering of the signal is configurable.

e The data format is configurable. You can select unsigned or signed values (Single
quadrant or 4-quadrant), and left or right justified values.

| NCP1503 Topic 3 Page 132 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The block diagram for ATDO shows some of the capabilities of this converter, along with the
internal devices that make possible these capabilities.

Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)

Bus Clock . Clock ATD clock ATD10BAC
Prescaler
y
r— - — — — -~ . —
| Elg:g? = | : ;\?ﬂer Mode and Sequence Complete N
| | P Timing Control Interrupt
ETRIG2 e > b
| ETRIG3 [ o
L T F o A
(See Device QOverview I

chapter for availability
and connectivity)

‘ ATDCTL1 ATDDIEN ‘

PORTAD ¥ Results

\
VDD'\ \ J[ATDO
SsA - Successive | d i-l:g ;
VRH Approximation || ATD 3
VRL Register (SAR) ATD 4
and DAC AID 5
ATD 6
ATD 7

ANT o
ANG o
> +
ANS | Sample & Hold
AN4 L o—ui—b—q _/
p. - -
AN3 “ .
Analog Comparator
AN2 * MUX v
1o

AN1
ANO

Figure 5-1. ATD Block Diagram

Setting up VrH

In other courses, you’ve come to think of the REF02 integrated circuit as a fixed 5.0 V
reference. The designers of the IC knew that it would be very difficult to make all of their
products produce exactly 5.0 V, so they included a TRIM pin that can be used to adjust the
output slightly. We have taken advantage of this feature, and have incorporated an output
trimming circuit that can be used to set the REF02 output to 5.120 Vbc, which gives us a
useful step size. With a 10-bit A to D converter, the step size is

v
v 5120 5.000mV / step

2n 210 -

StepSize =

| NCP1503 Topic 3 Page 133 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Here’s the circuitry involved. The capacitors are there to filter out noise and variations in
the power supplies. What's important to our discussion is VR3, the trim potentiometer.

“ov
Q

L

K s v V
1 - l . VRH (&
5
NC v Tam. | RS el
S® T T
= 2
<
1 % V4
V4 V2
v A%

On your board, you will need to connect a digital voltmeter between ground and VREF, and
adjust VR3 to set VREF to 5.120 Vbc.

Configuring ATDO

The full details for the registers we're using are found in Chapter 5 of the “"Data Sheet”.
Here’s a summary that includes the ones we’ll be using.

Register

Bit7 [ 5 4 3 1 Bit0
Name
ATDCTLO $| 0 I 0 I 0 I 0 I o WRAP2 ‘ WRAP1 ‘ WRAPO ‘
ATDCTL1 0 0
‘ETRIF‘SE I I I I ETRIGCHZ‘ETRIGCH'I ‘ETRIGCHO‘
ATDCTL2 R ASCIF
W‘ ‘ AFFC ‘ AWAI ‘ ETRIGLE ‘ ETRIGP | ETRIGE ‘ ASCIE ‘—{
ATDCTL3 R
W}—¢ ‘ S4C ‘ s2C ‘ si1c FIFO ‘ FRZ1 ‘ FRZ0 ‘
ATDCTLA ‘ SRESS ‘ P1 ‘ SMPO ‘ PRS4 ‘ PRS3 PRS2 ‘ PRS1 ‘ PRS0 ‘
ATDCTLS ‘ DJM ‘ ‘ SCAN ‘ MULT }—‘ cc ‘ ‘ CA ‘
ATDSTATO R 1] CC2 cC1 CCo
W‘ SCF ETORF ‘ FIFOR | ‘ | | ‘
| \ | | |
ATDDROH 10-BIT 0 0 0 0 1] 0 BITOMSB| BITS
8-BIT 0 0 0 0 0 0 0 0
Wi
ATDDROL 10-BIT BIT7 BIT6 BITS BIT 4 BIT3 BIT2 BIT 1 BITO
8-BIT|BIT 7 MSB BIT 6 BIT S BIT 4 BIT 3 BIT2 BIT 1 BITO
W]
ATDDIEN
W‘ IENT ‘ IENG ‘ IENS ‘ IEN4 ‘ IEN3 ‘ IEN2 ‘ IEN1 ‘ IEND ‘

In the datasheet, the registers are named “"ATDCTLx", etc. But since there are two Ato D
converters in this controller, we need to insert a “"0” after "ATD"” in each case to specify that
we're using ATDO (not ATD1, which is connected to the switches and LEDs).

Remember DDR1AD1 and ATD1DIEN1? We needed to digitally-enable the inputs in order to
get a digital signal into them. However, to receive analog signhals, we need to have DDRAD
and ATDDIEN or, in our case, DDR1ADO and ATDODIEN, cleared to LOW for the pins to be
enabled as analog inputs instead. Since the unit defaults to 0, we shouldn’t have to worry
about DDR1ADO and ATDODIEN, unless somewhere else in software we’ve set these bits to
“1”. In any case, it's good practice to make sure the pins are configured correctly.

Your instructor will probably want you to create a library for A to D conversion, called
“ATDO_Lib.c”, with its prototype header file "ATDO_Lib.h"”. In this library, the first entry
should be an initialization routine, ATDO_Init().

| NCP1503 Topic 3 Page 134 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Notice in the list of registers that there are six control registers: ATDCTLO through
ATDCTL5. The first two are for modes we're not going to use. So, let’s start with
ATDOCTL2 (notice the “0” inserted in the register name). You should probably refer to the
register descriptions in Chapter 5 of the “"Data Sheet” to determine what each bit should be
in the following registers, if they aren’t obvious.

e For ATDOCTL2, we want to power up the A to D converter, run in fast flag mode (nho
need to write to the flag to clear it), run in wait mode, operate without external
triggering, and turn off interrupts.

e In the “"Data Sheet”, it says that, once ATDOCTL2 has been set up and the A to D
Converter has been powered up, we need to wait at least 50 us before anything else
can be configured. You probably don’t want to be forced to include your Misc_Lib
every time you run the A to D converter, so it makes sense to create a simple delay
using a clock-cycle-based loop. We've done this before using “asm” commands to:
1) load an accumulator with a desired number of loops, then 2) execute the "DBNE”
Assembly Language command (three clock cycles) until the counter runs out.

e For ATDOCTL3, we want 8 conversions per sequence, we want the converter to start
at our selected register (which we will soon set to 0) rather than being “first-in first-
out”, and we want the A to D converter to finish conversions before freezing on a
break. This one probably requires a look at the description in the “"Data Sheet”:

Table 5-8. Conversion Sequence Length Coding

Number of Conversions

S8cC S4C s2c sicC
per Sequence

[e=]

=0 O ol ol ol ol oo
M| | | - - O O]l oo
XMl =l ol = —slolo
| =|olalo=lo=lo
o =l @ ;| | Lo R =

Table 5-9. ATD Behavior in Freeze Mode (Breakpoint)

FRZ1 FRZ0 Behavior in Freeze Mode
0 0 Continue conversion
0 1 Reserved
1 0 Finish current conversion, then freeze
1 1 Freeze Immediately

(continued)

| NCP1503 Topic 3 Page 135 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

e For ATDOCTL4, we want to run this as a 10-bit converter, we’ll use four clocks per
sample, and we want each sample to be at least 7 yus. This one definitely needs
some information from the “Data Sheet”:

Table 5-10. ATDCTLA4 Field Descriptions

Field

Description

7
SRESS

AJD Resolution Select — This bit selects the resolution of A/D conversion results as either 8 or 10 bits. The
A/D converter has an accuracy of 10 bits; however, if low resolution is required, the conversion can be speeded
up by selecting 8-bit resolution.
0 10-bit resolution

8-bit resolution

6-5
SMP[1:0]

Sample Time Select — These two bits select the length of the second phase of the sample time in units of
ATD conversion clock cycles. Note that the ATD conversion clock period is itself a function of the prescaler
value (bits PRS4-0). The sample time consists of two phases. The first phase is two ATD conversion clock
cycles long and transfers the sample quickly (via the buffer amplifier) onto the A/D machine’s storage node.
The second phase attaches the external analog signal directly to the storage node for final charging and high
accuracy. Table 5-11 lists the lengths available for the second sample phase

40
PRS[4:0]

ATD Clock Prescaler — These 5 bits are the binary value prescaler value PRS. The ATD conversion clock
frequency is calculated as follows:

_ [BusClock]
ATDclock “PRE+1] =05
Note: The maximum ATD conversion clock frequency is half the bus clock. The default (after reset) prescaler
value is 5 which results in a default ATD conversion clock frequency that is bus clock divided by 12.
Table 5-12 illustrates the divide-by operation and the appropriate range of the bus clock.

Table 5-11. Sample Time Select

SMP1 SMPO Length of 2nd Phase of Sample Time
0 0 2 A/D conversion clock periods
o} 1 4 A/D conversion clock periods
1 0 8 A/D conversion clock periods
1 1 16 A/D conversion clock periods

Table 5-12. Clock Prescaler Values

Prescale Value Total Divisor Max. Bus Clock’ Min. Bus Clock?
Value
00000 Divide by 2 4 MHz 1MHz
00001 Divide by 4 8 MHz 2 MHz
00010 Divide by 6 12 MHz 3 MHz
00011 Divide by 8 16 MHz 4 MHz
00100 Divide by 10 20 MHz 5 MHz
00101 Divide by 12 24 MHz 6 MHz
00110 Divide by 14 28 MHz 7 MHz
00111 Divide by 16 32 MHz 8 MHz
01000 Divide by 18 36 MHz 9 MHz
01001 Divide by 20 40 MHz 10 MHz
01010 Divide by 22 44 MHz 11 MHz
01011 Divide by 24 48 MHz 12 MHz
01100 Divide by 26 52 MHz 13 MHz
01101 Divide by 28 56 MHz 14 MHz
01110 Divide by 30 60 MHz 15 MHz
01111 Divide by 32 64 MHz 16 MHz
10000 Divide by 34 68 MHz 17 MHz
10001 Divide by 36 72 MHz 18 MHz
10010 Divide by 38 76 MHz 19 MHz
10011 Divide by 40 80 MHz 20 MHz
10100 Divide by 42 84 MHz 21 MHz
10101 Divide by 44 88 MHz 22 MHz
10110 Divide by 46 92 MHz 23 MHz
10111 Divide by 48 96 MHz 24 MHz
11000 Divide by 50 100 MHz 25 MHz
11001 Divide by 52 104 MHz 26 MHz
11010 Divide by 54 108 MHz 27 MHz
11011 112 MHz 28 MHz
11100 Divide by 58 116 MHz 29 MHz
11101 Divide by 60 120 MHz 30 MHz
11110 Divide by 62 124 MHz 31 MHz
11111 Divide by 64 128 MHz 32 MHz

1 Maximum ATD conversion clock frequency is 2 MHz. The maximum allowed bus clock frequency is
shown in this column.

2 Minimum ATD conversion clock frequency is 500 kHz. The minimum allowed bus clack frequency is
shown in this column

e For ATDOCTL5, we want our results to be right-justified unsigned values, we'll run in
continuous scan mode sampling all eight channels, and we want to have the results
of each conversion sequence start at result register 0 so that the result register will
match the input channel.

| NCP1503

Topic 3

Page 136 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

If you've correctly interpreted the information on the previous page, you should have ended
up with something like the following:

<-ATDO Library Files
#<Processor:  MC9512EDPS1Z2
ssCrystal: 16 HHz

by P Ro== Taylor
#<Decenber 2014

#include <hidef h>
#include “derivative. h”
Finclude "ATDO_Lib. h"
woid ATDO Init(woid)

{

DDE1ADO
ATDODIEN

= 0b000OO0O0D; ~~enable all channels as inputs

= 0b0O000O0O0OO0D;  ~rensure they are Analog
ATDOCTLZ = 0b11100000;

% ]

———interrupt dizabled

1
||| —interrupt flag {input - don't care)
|
| ————emternal trigger di=abled

- —=xternal trigger polarity (don't care)
—external trigger interrupt disabled
—A4TD continuss in wait mode

—fast flag —— clears on read

777777777 ATD power up

®

asz=mn LDE #134; ssneed a 50 us delay before continuing
asn DENE K, *;

ATDOCTLE = 0bOO
e

Y

ATDOCTLY = 0bOO
E

——— ~ bus clock divide by 14 = 571.4 kHz (1.75 us period)
with 4 clocks per sample. this i= 7 us per sample
which iz the regquired nininum

J— — 4 &¢D converszion clock pericds per sample

————————— 10-bit re=solution

*
ATDOCTLE = 0b101 on:

x [

| | —~ =starts filling the result registers

I ——— /7 at the bottom. mapping Channelz to DRz

|

————— {don't cares)
—————— sample all 8 channels
—Continuous scan conversion
———————— unsigned (=single guadrant)
_________ right—justified

Using ATDO

Now that the A to D converter has been initialized, we want to use it. For this, we’ll need to
connect an appropriate signal to the channel of choice, and run a routine that makes the

A to D converter go through a conversion sequence, then reads the resulting digital value.
The minimum requirement for this course is to perform A to D conversions using ANO,
which, as you should verify from the schematic, is connected to Pin 67 through a 1 kQ
resistor to minimize the chance of damaging this input pin with an incorrect input signal.

On your board, you should be able to see the eight resistors used to protect channels ANO
through AN7, and you should see a pin soldered into the header for Pin 67.

In your ATD_Lib, you will need to write a simple routine called “AtoD_ANO0”. It will wait for
the SCF flag (Sequence Complete Flag) which is b7 of ATDOSTATO, then it will read the
appropriate Data Register (in this case, ATDODR0O). Remember that we're doing 10-bit
conversions, so this result will have to be read as a 16-bit (int) value. Also, we've chosen
single-quadrant operation, so the result will always be positive (unsigned).

You will need to write a test routine that reads the input voltage and displays it somewhere,
probably the seven-segment display for simplicity. To verify your results, though, you will
need to write code to do the math and value manipulation necessary to convert the result to
an actual voltage, which you can verify with a digital multi-meter (DMM).

| NCP1503 Topic 3 Page 137 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Pulse-Width Modulation

When the first personal computers hit the market, the best audio they could manage was a
collection of annoying squeaks and beeps. Creative individuals figured out how to make
these squeaks and beeps sound like badly recorded voices and music by varying the
frequencies and duty cycles of the waveforms in a technique called pulse-width modulation.
With the advent of sound cards, those days are now in the past. However, it might surprise
you to know that many of our low-power audio devices (and expensive high-powered audio
amps, as well) use pulse-width modulation with slightly more sophisticated integration and
filtering circuitry to produce high-fidelity sound. This is called Class-D power amplification.

Also, in the early days of remote-controlled toys, motors would either be turned fully on or
off, resulting in jack-rabbit starts and stops, and crazy all-or-nothing turns. Pulse-width
modulation now allows for much smoother motor control, not only for remote-controlled
toys but for industrial processes, automotive devices, etc. Many microcontrollers have
sophisticated pulse-width modulators to allow for programmable control of such devices.
The 9S512X has a highly-configurable eight-channel PWM module. We will only begin to
scratch the surface of the capabilities of this module.

The PWM module is used to create waveforms with programmable period and duty. There
are a number of uses for programmable waveforms, most residing well outside the scope of
this course.

For fun, we've connected a speaker to one of the PWM channels of your board, channel 6,
with a jumper to enable you to disable the speaker when you see an angry hulk
approaching. We also have three channels of the PWM (channels 0, 1, and 4) wired to an
RGB LED to allow you to control the resulting colour and brightness of this LED, and we
have channel 3 wired to the backlight of the LCD display to allow you to control that, as
well. The other three channels are available at the general breakout headers on the board.

PWM Channel | Function
0 RGB Blue
1 RGB Green
4 RGB Red
3 Backlight
6 Speaker

Using the PWM channel connected to the speaker, you can create waveforms of the correct
period and duty to generate amusing sounds on your speaker. You can use these sounds to
add useful enhancements to your code (key clicks, alarms, start-up sounds, etc.), create
cheap '80s style music, or generally drive your lab mates crazy.

The PWM subsystem is fairly easy to get along with, and relies heavily on a series of clocks.
As with most modules on the 9S12X, the PWM subsystem is configured through a series of
registers, shown in a screen capture on the next page to give you a sense of the complexity
of this module. We'll learn about the registers of interest to you as you need them.

| NCP1503 Topic 3 Page 138 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

R ————

NOTE
ress — Base Address + Address Offset, where the Base Address

s defined afthe MCU level and the Address Offset is defined at the module
level

8.3.2  Register Descriptions
T ibes in detail all the registers and register bits in the PWM module.

enablad (CONxcx bits
setin PWMCTL regis 16-bit PWM channel is controlled by the

ftar Summary {Shest 1 of 3]

= ) e ——

There are eight fairly independent PWM channels in the MC9S12XDP512 - “fairly”
independent, because you can control a lot of characteristics independently; however, the
clocks, although highly configurable, are shared by four channels each, which can be
challenging if you want to control devices requiring radically different timing characteristics.

An additional feature available in the MC9S12XDP512’s PWM module is the ability to
combine (concatenate) pairs of eight-bit PWM channels into sixteen-bit channels. If you
ever need to do this (likely to make extremely long signal periods), you will need to use the
PWM Control Register (PWMCTL). Since this isn’t a common application, you're left on
your own to research this option if you need it.

Generating Waveforms

The diagram below shows graphically the parts of a pulse, using standard terminology
(positive polarity). For negative or inverted polarity, the “"Duty” would be the time that the
signal is LOW.

| Duty |

| Period |

The PWMPOL register, which determines the polarity of the pulse, is shown below.

PWMPOL R
PPOLY PPOLG PPOLS PPOL4 PPOL3 PPOL2 PPOL1 PPOLO

Strangely, the default condition of each PWM channel is negative or inverted polarity. For
most of our applications, we want to set the bits in PWMPOL to make them normal polarity.

| NCP1503 Topic 3 Page 139 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

The next characteristics of the waveform all relate to timing. You've learned in other
courses that the most basic aspects of waveform timing are frequency and its inverse, the
period. The timing characteristics are based on clocks internal to the PWM module.

There are four clocks that are available to drive the PWM rates, and all are based on the bus
clock. The clocks are called A, SA (scaled A), B, and SB (scaled B). Either the A/SA or
B/SB clock pairs are available for the PWM you’re working with, defined in the hardware of
the device. For each PWM channel, you must decide whether you want to use the basic
clock that’s available (A or B) or whether you want to use the scaled clock (SA or SB). This
is done through the PWMCLK register.

PWMCLK R
PCLKT PCLKLG PCLKS PCLK4 PCLK3 PCLKZ2 PCLK1 PCLKO
Table 8-3. PWMCLK Field Descriptions
Field Description Field Description
7 Pulse Width Channel 7 Clock Select 3 Pulse Width Channel 3 Clock Select
PCLK7 0 Clock B is the clock source for PWM channel 7. PCLK3 0 Clock B is the clock source for PWM channel 3.
1 Clock 3B is the clock source for PWM channel 7. 1 Clock 3B is the clock source for PWM channel 3.
6 Pulse Width Channel 6 Clock Select 2 Pulse Width Channel 2 Clock Select
PCLKG 0 Clock B is the clock source for PWM channel 6. PCLK2 0 Clock B is the clock source for PWM channel 2.
1 Clock SB is the clock source for PWM channel 6. 1 Clock SB is the clock source for PWM channel 2.
5 Pulse Width Channel 5 Clock Select 1 Pulse Width Channel 1 Clock Select
PCLKS 0 Clock A is the clock source for PWM channel 5. PCLK1 0 Clock A is the clock source for PWM channel 1.
1 Clock SA is the clock source for PWM channel 5. 1 Clock SA is the clock source for PWM channel 1.
4 Pulse Width Channel 4 Clock Select 0 Pulse Width Channel 0 Clock Select
PCLK4 0 Clock A is the clock source for PWM channel 4. PCLKO 0 Clock A is the clock source for PWM channel 0.
1 Clock SA is the clock source for PWM channel 4. 1 Clock SA is the clock source for PWM channel 0.

It's important to note which basic clock is being used, A or B, and that ‘0’ selects the basic
clock whereas ‘1’ selects the prescaled version of that basic clock.

The next register to configure is PWMPRCLK. This register determines how clock A and/or
clock B is divided down from the bus clock. PWMPRCLK affects the basic clock speeds, and
so affects the frequency of all waveforms produced by the PWM module. Notice that both
prescalers are contained in the same register, but at different bit locations. Be careful with
this! Also, notice that there are only three bits associated with each prescaler. That's
because these bits represent the power of 2 for the prescaler. We'll refer to the prescaler
as 2PREx where ‘X’ is either A or B.

PWMPRCLK R 0

PCKB2 PCKB1

W

PCKBO

PCKA2 PCKA1 PCKAD

| NCP1503

Topic 3

Page 140 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

If you have chosen to use the scaled version of the clock, SA or SB, it is necessary to use
the PWMSCLA or PWMSCLB register, as well. We'll refer to these as PWMSCLx, where ‘X’
is either A or B. This provides the scaling factor, allowing for fine control over the settings
chosen for the A or B clock previously. The information for PWMSCLA has been provided;
PWMSCLB behaves identically, but for clock SB.

PWMSCLA divides down Clock A to generate Clock SA, and PWMSCLB divides down Clock B
to generate Clock SB.

8.3.2.9 PWM Scale A Register (PWMSCLA)

PWMSCLA is the programmable scale value used in scaling clock A to generate clock SA. Clock SA is
generated by taking clock A, dividing it by the value in the PWMSCLA register and dividing that by two.

Clock SA =Clock A /(2 * PWMSCLA)

NOTE

When PWMSCLA = $00, PWMSCLA value is considered a full scale value
of 256. Clock A is thus divided by 512.

Any value written to this register will cause the scale counter to load the new scale value (PWMSCLA).

7 & 5 4 3 2 1 0

Bit 7 6 5 4 3 2 1 Bit0

Reset 0 0 0 0 0 0 0 0
Figure 8-11. PWM Scale A Register (PWMSCLA)

Read: Anytime

Write: Anytime (causes the scale counter to load the PWMSCLA value)

Be aware that the clock is divided by TWICE the value you choose for the scaling value, not
the scaling value itself.

There’s a "NOTE” on the data sheet indicating that 0x00 means 256. This does not seem to
be true. The biggest divisor available seems to be 2 x 255 = 510.

In addition to the clock rates chosen, the waveforms you will be generating are managed by
byte-sized period and duty values, controlled using two more registers: PWMPERnN and
PWMDTYn, where "n” is the number of our selected channel. Channel 0 is shown below:

PWMPERD R
Bit7 6 5 4 3 2 1 Bit 0

W

PWMDTYD R
W Bit 7 6 5 4 3 2 1 Bit 0

The period and duty values are expressed as numbers of clock cycles. This means that the
shortest period would be 2 cycles of the clock, (up for one cycle, down for one) and the
longest would be 255 cycles of the clock. For this shortest period, the duty could only be 1,
since either 0 or 2 would produce a DC signal.

Typically, the duty cycle of a signal is defined as a ratio or percentage, as shown below:

t t
d=-"- or d =-2x100%
T T

| NCP1503 Topic 3 Page 141 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

So, the duty cycle for the PWM module, as a ratio, would be

_ PWMDTYn
PWMPERn

A very common duty cycle is 50%, which represents a true square wave. For this,
PWMDTYn would be half of PWMPERN.

There are several strategies you may use to determine clock scaling values, the simplest
being to pick a frequency and a fixed duty cycle, then work backwards to solve for the
required clock pre-scalers, period value, and duty value. Enter the number of clock cycles
for the period into PWMPERN, then enter the number of clock cycles (less than PWMPERN for
obvious reasons) into PWMDTYn.

The frequency, and consequently the period, of the output signal are, therefore, controlled
by two variables if the prescaled clocks are not used: The A or B clock pre-scaler from
PWMPRCLK and the number of PWM clock cycles per period in the PWMPERN register.

fe SMHz
2PREX o PWMPERnR

If the prescaled clocks are used, three variables control the resulting frequency:
PWMPRCLK, the SA or SB clock scale register (PWMSCLx), and the number of PWM clock
cycles per period in the PWMPERN register.

I= SMHz
2P % 2 x PWMSCLx x PWMPERn
For reasonably accurate frequencies, you should try to keep the value of PWMPERN large -

close to 255. For example, if you are off by a cycle, one cycle out of 255 is much less
significant than one out of three!

and T =125ns x 27 x PWMPERn

and T =125ns x 2" x 2x PWMSCLx x PWMPERn

The last thing to do is actually turn on the channel, which is done by setting the
corresponding bit in the PWME register:

PWME R
PWMET PWMEG PWMES PWME4 PWME3 PWME2 PWME1 PWMEQD

We've left discussion of this register to the end because, unlike many of the modules we've
worked with to this point, we sometimes don’t want to have the PWM channel turned on all
the time. Manipulating this register allows you to turn your signals on and off under
software control.

The code snippet on the following page turns a 1 kHz square wave, sent to the speaker, on
and off once per second. If you build this code, you can monitor the signal by probing the
left side of JP1 on the board with an oscilloscope. Also, with JP1 installed and VR2 turned
up, you should be able to hear the tone.

| NCP1503 Topic 3 Page 142 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

3 3636 36 36 3 3636 36 36 36 36 36 3 36 3 36 36 36 3636 3636 36 36 36 36 36 3636 3 36 36 3636 3636 36 36 36 36 36 3 36 36 36 36 36 3636 3636 36 36 36 36363 I EHEHHEX

* Initializations=

36 36 36 36 36 3636 36 36 36 363636 36 36 36 36 36 36 I3 3636 36 36 36 36 3636 36 36 36 36 36 36 36 36 3636 36 36 36 36 36 3636 36 36 3636 3636 IE 36363636 6 36 36 363 I I X

TimInitBu=():

FWHMPOL =0b11111111;
FUHCLE |=0b01000000 ;
go00000-{2"2
PUMPRCLE &=0b0O0001111;
FUMPRCLE |=0b00100000;

% 1 kH=z

PWHSCLE
PWHPERG
FWHDTY6

for (::)
1

4
250 ;
125;

Sepositive polarity, all channels

<#Uze SB az the cloclk for channel & (speaker)
= 2 =% 4 = 2500 =~

ssczlear PRE-E before =setting

/+FRE-B = 2"2

S/Scale = 2 x4

S<keep the period number large for accuracy
o580 duty cwcle

s«endless program loop

733636 36 36 3 3636 36 36 36 36 36 3 36 3 36 3 363636 3636 36 IE 3 363 336 3 36 36 3636 363636 36 36 36 36 3 36 3 36 36 36 3636 3636 3 36 I 3636 3 36 36 36 36 336 IE X

* Hain Program Code

36 36 36 36 36 3636 36 36 36 363636 36 36 36 36 36 36 I3 3636 36 36 36 36 3636 36 36 36 36 36 36 36 36 3636 36 36 36 36 36 3636 36 36 3636 3636 IE 36363636 6 36 36 363 I I X

Slesp n=(5007%;

FUME"=0b01000000;

F

S#half zecond on, half second off
<< .by toggling PWHEG

| NCP1503

Topic 3

Page 143 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

True Pulse-Width Modulation

For many applications, including motor control, a pulse-width modulator is set to operate at
a fairly high but constant frequency (called the “chop frequency”), and the pulse width, or
duty cycle, is modified (modulated) to produce a varying average voltage. On our
microcontroller development kits, the most obvious application of this is in controlling the
brightness of the LED back light and/or the brightness of the three colour elements of the
Red/Green/Blue (RGB) LED. Since our eyes are typically not sensitive to changes faster
than about 100 per second, we can set the frequency to something fairly slow, as far as the
PWM module is concerned - on the order of 100 to 200 Hz. Once the frequency is
established and the desired channels are turned on, we simply vary the duty cycles to vary
the brightness.

The LED backlight (channel 3) operates over a reasonable range of brightness, so we can
comfortably vary the duty cycle from 0% (full OFF) to 100% (full ON, or DC). However, the
RGB LED is intensely bright, so we usually limit the duty cycles of its elements (channels 0,
1, and 4) to less than 25%.

In both cases, since the duty cycle is of primary importance to us, we will set its range to
something easily-manipulated by using a PERIOD value like 100 or 200. With a range like
that, 100% is either a duty of 100 or 200, making the steps easy to work with - either 1%
per step or 0.5% per step.

(Optional topic) True Pulse Width Modulation is also used in Class-D audio amplifiers, which
are used in most low-power audio devices (cell phones, mp3 players, tablets, laptops, etc.);
and it is also used in FET power amplifiers used for public address systems and many home
audio systems and high power sound systems like those used in live music venues.

In this case, the chop frequency is set to double the desired audio range or often much
higher (double meets the requirements of Nyquist's sampling rate). The duty cycle is
modulated to follow the constantly-varying amplitude of the desired signal. The resulting
series of pulses is fed into an integrator, which produces a signal averaged, or smoothed,
over time. The figure below shows the modulated pulses (full scale) and the output of the
integrator, which is roughly sinusoidal in this instance.

The “jagged sinusoid” shown above would be the result of simple integration of the PWM
pulses. Note that, when the duty cycle is greater than 50%, the integrated signal rises;
when the duty cycle is less than 50%, the integrated signal falls.

In reality, the difference in frequency between the PWM signal (chop frequency) and the
output of the integrator (the demodulated signal) would be so great that the “jaggedness”
would be greatly reduced. Additional filtering, following the integrator, would be used to
further remove unwanted high frequency components.

| NCP1503 Topic 3 Page 144 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The following page shows a sample section of code, with the resulting waveforms seen at
the output of the PWM (channel 1) and after the integrator (channel 2). Note the following:

1. The values for the duty cycles in the lookup table “cWave[180]” were generated
using the formula shown in the “fx” line of the Excel screen shot below, applied to
angles, in steps of 2 degrees, from 0 to 358:

B2 - S | =INT[63*SIN[RADIANS(A2)}+64)
A B = D E F G
1 Angle Value
2 0 64
3 2 66
a4 4 68

= A Tn
Excel works in radians only, hence the conversion of angles to radians; the resulting
values will range from 63+64 = 127 to -63+64 = 1, giving us all positive values in a
sine wave with an offset of 64; we want the nearest integer, since the 9512X
microcontroller isn’t set up at this time to use floating-point decimals; we don’t
include 3609, as that’s the same as 0° in our repeating sine wave.
Both the PWM module and the Timer are running as fast as possible - the Bus clock.
The PWM module is set to run at 62.5 kHz, well above the audible range.
Using a timer interval of 44 counts, each 125 ns long, it takes 990 ps to run through
all 180 values for the duty cycle in the table, for a frequency of 1.01 kHz on the
resulting sine wave. The endless “for” loop starts at the top of the table again.
5. The PWM frequency is constant - only the duty cycle changes sinusoidally.
6. The speaker is driven by a transistor switch, which is an inverter, so the sine wave

rises when the duty cycle is close to 1/128 and falls when it is close to 127/128.

7. The jagged edge of the integrator can be seen on the sine wave.
8. Channel 2 is AC coupled to block the DC offset generated by the transistor switch.
9. The speaker volume control is set to maximum to drive the integrator appropriately.

PN

| NCP1503 Topic 3 Page 145 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems
o
® Yariables
rd
un=signed char cCounter:
e
* Lookups
'
un=signed char cWaws[180]=
64.66.68,.70,72,74.77.79,81,83,85,87.89,91,93,95,
97.99,101,102,104,106,107,109,110,112,113,114,116,117,118,119,
120,121,122,123,123,124,125,125,126,126,126,126,126,127 126,126,
126.126.126.125.125,124,123,123,122,121,120,119,118,117 116,114,
113,112,110,10%9,107,106,104,102,101,99,97,95,93,91,89,87,
85,.83,81,79,77,74,72,70,68, 66, 64,61, 59,57 55 53,
50.49,46,44,42,40,38,36,34,32,30,28,26,25,23,21.
20,18.17,15,14,13.11.,10,9,8.7.6.5.4.4.3,
2,2,1,1.1,1,1,1,1,1,1,1,1.2.2,3,
4,4, 5,6,7,8,9,10,11,13,14,15,17,18, 20,21,
23.25.26.28.30,32.34.36,38.,40, 42,44, 46,48,50,53.
55.57.59.61
}:
wold mainiwoid) <4 main entry point
_DISAELE COF();
Ie
* Initializations
o
TimInitl25n=(): sw=zet up Timer Channel 0 for bus clock speed
EWHCLE &=0b10111111; ##U=ze B Clock directly
PWHFRCLE &=0b10001111; ##5Set B clock to Bus Clock (8 HH=z)
FUMPERG = 128:; <7128 clock cycles = 62.5 kHz
FUMDTYE = 64: Soimitially 50X duty cycle
PUHE |=0E01000000; Ssturn on channel & {=s=peaker)
TCO=TCHT+44 sofirst timer interwval: 44 = 180 = 125 n= = 990 us
ssfor a 1.01 kHz =ins wave
for (::3 srendless program loop
o
* Hain Program Code
o
for{cCounter = 0;cCounter<l80;cCounter++) <sendles=sly loops through
##the entire =et of 180 walues
PUMDTYE= cWave[cCounter]: Ssget the current duty valus
while{ {TFLG1&0b00000001)==0); ssqait for the timer flag
TCO+=44: <=2t up the ne=t interval
TFLG1 | =0b00000001 ; ssclear the flag
H
¥
}.
1200y, 2 s00% 3 0.0s 100.08/ Stop
b
i mEEEE w8 B F (Rt b i R R R E e e
Ll e e e e A e R R R R h -

| NCP1503

Topic 3

Page 146 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

I2C Bus

There are a number of serial communication systems that can be used to communicate
between devices on a printed circuit board or over short distances. One reason for doing
this is to reduce the number of interconnections required between devices. We discussed
this earlier, when we compared using more than 64 parallel wires (and, incidentally, more
than 64 pins per device) with using RS-232 as a serial communication system that needed,
as a minimum, three wires: transmit, receive, and ground. The 9S512XDP512 also provides
other serial communication options: Serial Peripheral Interface, or SPI, Controller Area
Network, or CAN Bus (typically used in automotive applications), and Inter-Integrated
Circuit, or I?C Bus. Different peripherals are available for these different busses, depending
on the desired application. What they share in common is the ability to put multiple devices
on a single bus, which dramatically simplifies the hardware component, but complicates
thesoftware component somewhat.

In previous versions of this course, we chose to work with the SPI bus, as it is an old
workhorse that’s not likely to go away anytime soon. However, when the current version of
the microcontroller board was designed, we focused on the I?C bus. On your board, you will
find the following I2C devices (they're tiny, so you might have to search for them):

M41T81 Real-time Clock (with battery backup - the battery is under the LCD display)
24AA512 Memory - 512kB of EEPROM
LTC2633HZ12 Dual channel 12-bit Digital to Analog Converter (DAC)

and SDA is for bidirectional serial data trapnsmission.
2 \o\

‘ ’ | |

\ ,_r I | 1
! \ 0 r . i o #3 | o
Device #1 Device #2 Device #3 [lew #Ha4
—'—’J;;Lﬁ-s configdred y device|can Be “master’ tMMWﬁ
th

MPL3115A2 Precision Altimeter/Barometer/Thermometer

LSM303DLHC Accelerometer/Compass 6
The I2C bus requires, in addition to p -ardground, two line§: SCL Is the serial cIoc

. t/.MJr
AN 3\\{\"\
I o+
o ] >
k/ scL 2 f
N\

with any “slave” it chooses to talk to. Since only one device can talk at a ti
becomes a logistical issue: devices that aren’t talking must not have any effect on the bus,
or they will prevent other devices from communicating or will introduce errors.
Multi-drop communication is achieved by making all of the connections to the bus open
drain or open collector. In your semiconductors course, you learned about at least one
such device - the dedicated comparator. For these devices to work, an external pull-up
resistor is needed. Internally, each device has a FET or BJT wired=as—a—switch, but the
switches lack an Rp or Rc, which we must provide externally. (With the I2C hus, all the
devices use the same pull-up resistor, which makes them act as wired-OR devices. When
their transistors are turned OFF, the pull-up resistor pulls the lihe up to a }ogic HIGH. When
any one of the devices turns on its transistor, the line pulls down toafogic LOW. So, as

long as all devices rest with their transistors off, any single device can talk without
interference from the rest.

| NCP1503 Topic 3 Page 147 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

Another feature of this system is its ability to communicate at different speeds for different

example, the LTC2633 DAC has, as the top bits of its address, 00100xxr. There’s one
that makes possible three distinct addresses by controlling the bottom two bits. Here’s

. The device talking at any point in time generates

vhich synchronizes

[ ¢

that works:
CAO Condition Lower two bits
Ground 00
Floating 01
Vbbp 10

This means that you could have three LTC2633 DACs on the same bus with different
addresses: 0010000r, 0010001r, and 0010010r. Now for one of the things you need to
know as a programmer: These seven bits are at the TOP of the address, and the least
significant bit is used as a Read/Write line. So, to talk to these devices, you would need to
treat these three addresses as 0x20, 0x22, and 0x24. However, as is made obvious by the
oscilloscope in this author’s cubicle, they are officially only 7-bit addresses with the low bit
missing, and should be thought of as 0x10, 0x11, and 0x12!

Here’s a screen shot from the author’s oscilloscope of the 9S12X talking to a device with the
seven-bit address 1100000r which we would have to treat as 0xCO0, but is officially 0x60.

1o200ve 20 2008 3

246.05

a0.00s/ stop

- -

cOwa D4a SE0Ra 15~a3

had

E0wa

05a

The top trace is SCL. Notice that it starts and stops, depending on how the bus is being
used. The lower trace is SDA, and contains communication both from the 9512X, acting as
a “master”, and the device at address 0b1100000r, acting as a slave. The line at the
bottom shows that the master told the device it was going to Write something to it "60W”,
sent 0x04 “04" to it, indicated a restart "S”, told the device it was going to Read from it

“60R"”, so the device put 0x15 “15”on the bus. (The

A\ /4

a an

d “~a” are ACK and NACK

handshaking tools - each master Command expects an ACK (acknowledge), but
communication back from the slave is followed by a NACK (not acknowledge) instead.)

| NCP1503 Topic 3

Page 148 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Basic 12C Communication Using the 9S12X

On our board, the 9S12X will always be the Master, and the peripherals on the board will be
Slaves. Here'’s a table of the addresses for the available devices:

I’C Address I’C Address
Part Part Number (7-bit) (with R/W as r)
Real Time Clock M41T81 0x68 0b1101000r
512 kbit Memory (64kB) | 24AA512 0x50 0b1010000r
Dual 12-bit DAC LTC2633HZz12 0x10 0b0010000r
Pressure/Temperature MPL3115A2 0x60 0b1100000r
Accelerometer LSM303DLHC 0x19 0b0011001r
Compass LSM303DLHC Ox1E 0b0011110r

To use the bus, our micro has to do the following:

1. Check to see if the bus is available by checking the “"IBB” bit (b5) of the status register
(IBSR). This is the “"Bus Busy” bit, and is SET when the bus is being used.

2. If the bus is available, issue a “Start” to take control of the bus. (Incidentally, “Start”
involves a negative-going transition on SDA while SCL is HIGH. This is generated in our
I2C controller by setting the Master and Tx bits in the control register, IBCR.)

3. Notify the desired slave by its address, while at the same time indicating, typically, that
we're going to write to it.

4. Send a byte that contains the internal address of the register we want to put something
into or take something out of.

Now, things go either of two ways, depending on whether we’re writing or reading.

Writing

5. Send the data.

6. Indicate a “Stop” to free up the bus for another device to take control (of course, on our
board there’s no one else to take control, because there’s just one device that has the

brains to be Master, and that’s our 9512X). A “Stop” involves a positive-going transition
on SDA while SCL is HIGH. (In our I?C module, clear the Tx bit in the IBCR.)

Reading

5. Indicate a “Restart”, which will allow us to keep control of the bus, and allows us to
issue a new command to the slave of our choice. (There’s a Restart bit in IBCR.)

6. Send the slave’s address again, but this time indicating we’re going to Read from it.
(Usually, the contents of the register we indicated in step #4 will be waiting for us.)

7. Receive the data byte.

8. Indicate a “Stop” to free up the bus.

You'll have to also check to see if data is actually available, and wait until communication is
complete, etc., but for now that’s the basic process.

Variations on the theme:

e If you need to write more than one byte to a device that knows how to do that (e.qg.
one that auto-increments the internal address), you can just keep writing data bytes
until you're done, then indicate a Stop. One example of this is for memory devices
that require a 16-bit address, like the 24AA512. For these, we have to send two
bytes to establish the starting address of the internal memory location we're

| NCP1503 Topic 3 Page 149 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

interested in. Then, we can keep sending sequential bytes until we’ve stored
everything we intended to store.

e If you need to read more than one byte from a device that knows how to do that,
you can just keep reading data bytes until you’re done before indicating a Stop. One
example of this is the MPL3115A2, which can send its information in five consecutive
bytes. Other devices need to transmit 16-bit values in two bytes.

e .. There seem to be an almost-infinite number of variations on the theme. The
datasheets for each I?C device will provide necessary information and timing
diagrams to help you establish a working relationship with that device.

You will want to start a new library and library header called “IICO_Lib"”. The IICO part is
because there are two I?C busses on our controller, and the devices on board are wired up
to I°C-0. These are the primary functions you’ll eventually have in it:

void IICO Init(void);

void IICO WriteDAC (unsigned char cAddr, unsigned char cCommand, unsigned int iData);

void IICO Write (unsigned char cAddr, unsigned char cReg, unsigned char cData);
unsigned char IICO Read(unsigned char cAddr, unsigned char cReg);

In the header file, you may choose not to specify the names of the parameters passed, to
provide you with more flexibility. Suitable names have been provided above to indicate
what the various parameters do.

The Init routine sets up the I°C-0 port in the 9512XDP512. In the “Data Sheet”, this is
discussed in detail in Chapter 9, parts of which are included in the discussion below for
convenience.

There are five registers used by the I?°C controller. To specify which I°C module we're
interacting with, we need to tack IICO_ in front of the register names.
Chapter 9 Inter-Integrated Circuit (ICV2) Block Description

9.3.2 Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard register
diagram with an associated figure number. Details of register bit and field function follow the register
diagrams, in bit order.

Register

Bit7 6 5 4 3 2 1 Bit 0
Name
IBAD R 0
| ADR7 | ADRS | ADRS | ADR4 | ADRS | ADR2 | ADRI
IBFD R
w| 1B IBC6 IBC5 IBCA IBC3 1BC2 IBC1 IBCO
IBCR "l sen BIE | MSSL | TRk | TXAK 0 0 IBSWAI
w X RSTA
IBSR rR[ TcF IAAS BB 0 SRW RXAK
IBAL 1BIF
w
IBDR R
wl o o D6 D5 D4 D3 D2 D1 DO

I:[ = Unimplemented or Reserved

Figure 9-2. lIC Register Summary

IICO_IBAD - This is the I?C slave address assigned to the 9S512. We don't have to worry
about this one, as we'll always be the Master, not the Slave.

IICO_IBFD - This is the Frequency Divider Register to set up the communication rate. To
set it up, you need to know what the requirements for the slowest device on the bus will be,
then pick a value that matches. This register sets up the clock speed and how many clock
cycles will be used for SDA Hold, SCL Hold for Start, and SCL Hold for Stop. There’s a
divider and a multiplier and a complicated formula, all of which can be bypassed by using

| NCP1503 Topic 3 Page 150 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

their lookup table, Table 9-5 in the current version of the Data Sheet, which is five pages
long! Here's a piece of it that will help us figure out what we need to put into IICO_IBFD:

Chapter 9 Inter-Integrated Circuit (IICV2) Block Description

Table 9-5. lIC Divider and Hold Values (Sheet 2 of 5)

IBC[7:0] SCL Divider SDA Hold SCL Hold SCL Hold
(hex) (clocks) (clocks) (start) (stop)
3E 3072 513 1534 1837
3F 3840 513 1918 1921
MUL=2
40 40 14 12 22
41 44 14 14 24
42 48 16 16 26
43 52 16 18 28
44 56 18 20 30
45 60 18 2 32
46 68 20 26 36
47 80 20 32 42
48 56 14 20 30
49 64 14 24 34
4A 72 18 28 38
4B 80 18 32 42
4C 88 22 36 46
4D 96 22 40 50
4E 112 26 48 58

Given the peripherals installed on our board, your instructors (primarily Simon Walker) have
determined that we want to operate at 100 kHz, with 20 cycles for SDA Hold, 32 cycles for
SCL Hold for Start, and 42 cycles for SCL Hold for Stop. (All of that information is found in
the data sheets for the various devices, and values have to be chosen for the slowest device
on the bus.) Given that we have an 8 MHz bus clock, you should be able to determine that
the appropriate value for IICO_IBFD is 0x47.

IICO_IBCR - We want to enable I?C, turn off interrupts, and operate normally in WAIT
mode. The rest of the bits can be 0 for now. One hitch: The Data Sheet says that I2C
must be enabled before changing any of the other bits in this register, so we have to turn
that bit ON first by itself, then make sure the interrupts and WAIT mode bits are turned OFF
after that - two writes to this register.

If you've been following this discussion, you should be able to verify the IICO_Init() routine
shown in the start to the IICO_Lib.c file, shown below.

l'~11C0 Librarv Files
#s/Processor:  HC9512XDPEL12
SsCrystal: 16 HH=

#<by P Roz=s Taylor

AsMay 2014

#include <hidef h:>

#include "derivative. h"

#include "IICO_Lib.h"

wold IICO_Init{woid)
IICO_IBFD=0=47:; #7100 kHz. SD& Hold = 20 cks., SCL Hold Start = 32 SCL Hold Stop = 42
IICO_IBCE|=0b10000000; ~“enable the bus — must be done first

IICU:IBCR&=DblUlllllU; Ssno interrupts, normal WAL
H

Two bits are important in the Status Register, IICO_IBSR: b5, IBB, is the I°C Bus Busy flag,
and b1, IBIF, the I?C Interrupt Flag, which is set whenever a transfer is complete (whether
or not we have interrupts enabled). The IBIF flag needs to be cleared by writing a 1 to it.
For some devices, such as the 24AA412 EEPROM, you will also need to monitor RXAK, the
“receive acknowledge” bit if you want to access more than one byte of memory at a time.

| NCP1503 Topic 3 Page 151 |




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

LTC2633HZ12 1°C DAC - 16-bit Data Writes

We're going to start with a device that “breaks the rules”, because it's a fairly easy device to

work with. It has no registers that we need to read, so communication is one-way.

However, it's a 12-bit DAC, so it needs a dedicated 16-bit “write” function so you can get
going with the I2C bus, then later we’ll write the standard 8-bit “write” and “read” functions.

The LTC2633HZ12 DAC that’s been added to your board is a dual 12-bit DAC, set up so that
its internal reference is effectively 4.096 V. DACA and DACB, the outputs of the two
internal DACs, are available to the right of the DAC module on your microcontroller kit, with

a ground pin positioned between them.

The pinout of the IC is as follows:

TOP VIEW

SCL 1
CAD 2
REF 3
GND 4

8 SDA
T Voo
& Vours
5 Vaura

T58 PACKAGE
B-LEAD PLASTIC TSOT-23

On the board, "CAQ” is connected to ground to make the device's slave address end in “00”
- i.e. 0x10 or 0b0010000r. (Check back a few pages to recall why this is the case.) If you
want, you can add up to two more LTC2633HZ12 modules: leaving CAO floating makes the
address 0x11 or 0b0010001r, and connecting CAO to +5 V makes it 0x12 or 0b0010010r.

The data sheet for this device goes into a lot of detail about how to use it, but the following
snippet is particularly informative for us in terms of how to send information to the DAC.

LTC2633

OPERATION

The format of the three data bytes is shown in Figure
3. The first byte of the input word consists of the 4-bit
command, followed by the 4-bit DAC address. The next
two bytes contain the 16-bit data word, which consists
of the 12-, 10- or 8-bit input code, MSB to LSB, followed
by 4, 6 or 8 don't-care bits (LTC2633-12, LTC2633-10
and LTC2633-8 respectively). A typical LTC2633 write
transaction is shown in Figure 4.

The command bit assignments (C3-C0) and address (A3-
AQ) assignments are shown in Tables 3 and 4. The first
four commands in the table consist of write and update
operations. A write operation loads a 16-bit data word
from the 32-bit shift register into the input register. In an
update operation, the data word is copied from the input
register to the DAC register. Once copied into the DAC
register, the data word becomes the active 12-, 10-, or
8-bit input code, and is converted to an analog voltage at
the DAC output. Write to and update combines the first
two commands. The update operation also powers up the
DAC if it had been in power-down mode. The data path
and registers are shown in the Block Diagram.

'WRITE WORD PROTOCOL LTG2633

Table 3. Command Codes

COMMAND*

C3

2

C1

[r)
=

Write to Input Register n

Update (Power-Lp) DAC Register n

Write to Input Register n, Update (Power-Up) All

Write to and Update (Power-Up) DAC Register n

Power-Down n

Power-Down Chip (All DAC's and Reference)

Select Internal Reference (Power-Up Reference)

oclo|lo|lo|lo|la|la|la
e e e = =R =

0
0
1
1
0
0
1
1

wlala|le|la|la|xs|a

Select External Reference (Power-Down Internal
Reference)

111 ] 1] 1 |NoOperation

*Command codes not shown are reserved and should not be used.
Table 4. Address Codes

ADDRESS (n)*

A3 | A2 | AT | AD

0] 0|0 | 0 |DACA

00| 0|1 |DACB

1t 1] 1|1 |AIDACs

* Address codes not shown are reserved and should not be used.

SLAVE ADDRESS ISTDATABYE ) A X 2ND DATABYTE ( A ) 38D DATA BVTE

INPUT WORD {LTC2623-12)

INPUT WORD

15T DATA BYTE

2ND DATA BYTE

3RD DATA BYTE

| NCP1503

Topic 3

Page 152 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Since it's a 12-bit device, it's obviously going to need two bytes of data sent to it. In fact,
as an I2C device, it’s going to need three bytes total: A Command byte and two bytes of
data, as shown on the previous page. Of course, this comes after identifying the DAC itself
on the I2C bus using its address.

We'll send the address as a parameter each time to be consistent with other functions in our
I2C library, although it should always be 0x20 - based on the seven-bit I°C address of 0x10,
which translates to 0b0010000r, where *r’ is the Read/Write bit. If, at a later date, you add
another DAC or two to your board, you will be able to use this function for them, as well -
just wire them up for the other two addressing options, and send to 0x21 or 0x22.

From the data sheet, the device defaults to the mode in which the DAC reference is 4.096 V.
Also, the command we’re going to use to write to the device includes a power-up, so we
don't need to do any initializing.

The Command byte is actually made up of one nibble for the command and one nibble to
specify which DAC channel or channels you’re addressing. The instructors in this course
have played with this device a fair bit, and have determined that the simplest way to send a
value to one of the DAC channels so that it appears instantly is to use the “"Write to and
update DAC register n” command, 0b0011. Then, the lower nibble will be 0b0000 for DAC
A, 0b0001 for DAC B, Or Ob1111 to set both DACs to the same value.

Like a number of I2C devices (another example is the MPL3115A2 barometer), this device
expects its data to arrive “left-justified”, meaning that the 12 bits it's expecting are the
upper 12, not the lower 12 of the 16 bits in an unsigned int. (Incidentally, this is to keep it
compatible with other members of the family that have more bits, which improve the
resolution by using the lower (i.e. finer resolution) bits.) So we need to send a byte that
contains the 8 upper bits, and a byte that contains the 4 lower bits followed by four zeros.

We need to write a new version of the I?°C “Write” command that fits the following header:

void IICO WriteDAC (unsigned char cAddr, unsigned char cCommand, int iData);

We also need to know what the step size is for this DAC.

StepSize = Vo = 4’026 =1mV / step
2" 2
When we send a numeric value to the DAC, it will be a number representing the voltage in
millivolts, and it will be in the format we’re used to: right-justified hexadecimal. So, the
first thing we need to do in our function for writing to the DAC is to convert the incoming
value to left-justified format, which simply means moving it from the lower 12 bits to the
upper 12 bits of a 16-bit value. Once that’s been done, we need to send the result out as
two 8-bit bytes, since we can only send 8 bits at a time on the I2C bus.

Based on the timing diagram on the previous page, the three bytes can be sent one after
the other, as long as we wait for the I?C flag to indicate that the device is ready for another
byte. (Incidentally, this is the sequential write process discussed previously, and can be
used for other devices we’ve touched on that have this as one of their modes of operation.)

Again, if you've been following the previous discussion, you should come up with something
like the code on the following page. Don't just copy this: Work it through to make sure you
understand what it does. You may also want to come up with more sophisticated ways of
moving the data to the right place in the int variable and parsing out the two bytes, such as
using regular division and MOD division.

| NCP1503 Topic 3 Page 153 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

woid IICO_WriteDAC{unsigned char cAddr, unsigned char cCommand, int iData)

iData*=16; srmove data into the upper 12 bits
while({IICO_IBSE & 0bO0100000%: ssgailt for not busy flag
IICO_IBCR |= 0bOO110000; Somicro as master, start transmitting

IIC0_IEDE = cAddr & 0Obl1111110; splace address on bus with ~Write
while( ! (IICO_IESE & 0bO0OOOOQ10%); ~rwait for flag

IICO_IBSE |= 0b0OOOOOO10; srolear flag

IICO_IEDE = ciCommand: s«zend the desired command

while{ ! (IICO_IESE & 0bO0OOOOQ10%); ~rwait for flag

IICO_IBSE |= 0b0OOOOOO10; srolear flag

IICO_IEDE = {unsigned char){iData-256): s<zend first unsigned char of the data
while( ! (IICO_IESE & 0bO0OOOOQ10%); ~rwait for flag

IICO_IBSE |= 0b0OOOOOO10; srolear flag

IICO_IEDE = {unsigned char){iData&0b0000000011111111); ~~=end second unsigned char of the data
while( 1 {IIC0 IESE & 0bO0OO0OOO10%Y: ~»wait for flag

IICO_TIBCRE é= 0b11001111; soztop transmitting, exit Haster mode

IICO_IBSE |= 0b000QOO010; ssclear flag

i

The following code snippet shows a very simple implementation of the preceding function
that generates two 4,095-step ramp waves: a rising ramp on DAC A and a falling ramp on
DAC B. You could use this to check your IICO_WriteDAC() function. You will need to
declare an unsigned int variable called iDataOut.

ITCO_Initiy;
for (::)
i
ITCO_WriteDAC(0=x20,0b00110000, iDatalut )

IICO_WriteDAC({0x20,0b00110001, 0x0FFF-1Datalut++):
b

| NCP1503 Topic 3 Page 154 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Standard Eight-Bit Writing

The standard 8-bit write routine is more generally useful for other I°C peripherals. Here’s
the prototype for this Write command from the header file:

void IICO Write (unsigned char cAddr, unsigned char cReg, unsigned char cData);

The Write function needs to be supplied with a device address, an internal address for the
register we're interested in, and a byte of data to put in that register. Here’s the procedure:

1. Watch the Status Register (IICO_IBSR) to see when the bus is Not Busy, as indicated
by a LOW on the IBB bit, b5.

2. Once the bus is free, change the micro to "Master” mode, set to “Transmit”. These

bits are in the Control Register, IICO_IBCR.

Place the device address on the bus with the LSB set to "Write” mode.

Wait for the Byte Transfer Complete process, as indicated on the IBIF flag of the

Status Register.

Clear the IBIF flag by writing a “1” to it.

Repeat the last three steps, but this time with the internal address.

Repeat, but this time with the data byte, and don't clear the IBIF flag yet.

Stop transmitting and exit “"Master” mode, using the Control Register.

Finally, clear the IBIF flag.

W

OONOWU

Take some time to see how the above discussion is handled in the following function.
void IICO_Write{unsigned char ciAddr. un=s=igned char cReg. unsigned char cData)

while(IICO_IBESE & 0bOO100000%; srygalt for not busy flag

IICO_IBCE |= 0b0O0D110000;
ITICO_IEDR = chAddr & 0b11111110:

while( ! (IICO_IESE & 0bOOOOOOL0O}):

IICO_IBSRE |= ObO0DOOOOL0:
IICO_TEDE = cReg:

while( ! (IIC0_TESR & 0bOOOOOOL10)):

IICO_IESE |= 0bO0DODOOO1O;
ITICO_TIEDE = cData:

while( ! (IICO_IESE & 0bOOOOOOL0O}):

IICO IECE &= 0b11001111;
IICO_IESE |= 0b0O0DOOOOD1O;

B

ASAMIcro 8= master, start transmitting

srplace address on bus with ~Nrite
sryait for flag
srolear flag

Ao locate desired register
soyairt for flag
sszlear flag

#szend dsta

sryalt for flag

Srztop transmitting, exit Master mode
ssolear flag

Note: This routine, and the others in this set of Course Notes, are handled as simply as
possible, and do not provide means of escape if something goes wrong with communication
- the system may simply freeze, waiting for a flag that never comes up. If you have an
application where the system needs to be essentially fail-proof, you will need to incorporate
ways of handling various unexpected exceptions, particularly by avoiding blocking loops (of
which there are four in the previous code alone!). Your instructor or someone with a lot of
experience with this (i.e. Simon Walker) might be willing to help you with this.

| NCP1503 Topic 3 Page 155 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Reading

As you can see from the header, the 8-bit "Read” routine needs to be supplied with a device
address and an internal address for the register we're interested in.

unsigned char IICO_Read(unsigned char cAddr, unsigned char cReg);

The contents of that register are returned to the main program as a byte. Here’s the
procedure, the first six parts of which were also part of the “"Write” routine:

Watch the Status Register (IICO_IBSR) to see when the bus is Not Busy.
Once the bus is free, change the micro to "Master” mode, set to “Transmit”.
Place the device address on the bus with the LSB in "Write” mode.

Wait for the IBIF flag of the Status Register.

Clear the IBIF flag.

Repeat the last three steps, but this time with the internal address.

Now, using the Control Register, issue a “Restart” command.

Place the device address on the bus with the LSB in "Read” mode.

Wait for the IBIF flag of the Status Register.

0. Clear the IBIF flag.

1. Using the Control Register, get ready to Receive a byte. The last byte received from

a device is supposed to have a NACK following it, so we need to indicate that no ACK

is required. Since you need to SET one bit and CLEAR another bit, this will take two

steps.

12.Here’s a curious fact: in order to initiate a Read, you need to read the I°C Data
Register (IICO_IBDR) once, which will generate garbage, before you move on.

13. Next, you wait for the IBIF flag, but you don't clear it yet.

14.Instead, you “Stop” by exiting "Master” mode, using the Control Register.

15. Now, clear the IBIF flag.

16. Finally, you can read the real data out of the I?C Data Register and return it to the

main program.

HBWoON oUhwWNE

Take some time to see how the above discussion is handled in the function shown below.

un=signed char IIC0_Read{un=igned char ciddr. unsigned char cReg)

{
un=zigned char cData:
while(IICO IEBSE & Q0bOOl0o0000%; sswalt for not busy flag
IICO_IBCE |= 0b00O110000; Somicro as naster, start transmitting
IICO_IBDE = chAddr é& 0bl1111110:; ssplace address on bus with ~Write
while(! (ITC0_IBSR & 0bOOOOOO10)): sswait for flag
TICO_TESE |= OkOOOOOO10; ssolear flag
IICO_IEDE = cReg: s~ locate desired register
while( ! (IICO_IESE & 0b0O0OOOL0)): Sswait for flag
IICO_TIBSE |= 0bOOOOOO10; Asrolear flag
IICO_TECR |= OkOOOOO100; Srrestart
IICO_TIEDE = (cAddr | 0bO0O0OO0OOO1Y); splace address on bus with REead
while( ! (IICO_IESE & 0b00O0OOOL0)): sowait for flag
IICO_TIBSE |= 0bOOOOOO10; Asrolear flag
IICO_TEBCE |= 0b0OOOO1000; ssreading 1 un=s=igned char only
ITCO_IBCE &= 0Obl1101111:; sorecelve unsigned char
chata = IICO_IEDE: ssnot actually — starts the process
while( ! (IICO_IESE & 0b00O0OOOL0)): sowait for flag
IICO_IBCE &= 0bl1011111; Aoztap
IICO_TIBSE |= 0bOOOOOO10; Asrolear flag
chata = IICO_IEBDE; s<for real thi= time
return cData;

H

| NCP1503 Topic 3 Page 156 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

MPL3115A2: Standard 8-bit Reads and Writes

The MPL3115A2 “Precision Altimeter” uses the standard 8-bit Read and Write functions

discussed previously, since its internal registers are few enough to have only 8-bit

addresses, and the data appears in 8-bit registers.

The following is a flowchart from the MPL3115A2 data sheet that shows how to set up the
device and how to read the internal registers. For this course, we'll just be using the
“Polling” side of the flowchart, so it's not as bad as it seems at first glance. The discussion
on the following pages will follow the flowchart, with some changes to the data sent to make

the device do what we specifically want it to do.

#12C Address is C0 =/
SlaveAddressIiC = 0xC0

 Satto Altimeter with an OSR =128*/
IC_RegWrite(Slave AddressiIC, 0x26, 0xB3);

* Sat INT to Active Low Open Drain *f
IC_RegWrite(SlaveAddressIIC, &28, 0xi1);

I Enable Data Flags in FT_DATA_CFG */
IIC_RegWrite(SlaveAddressiiC, 0x13, 0x07); " Enable DROY Interrupt®/
IC_RegWrite(SlaveAddrassIIiC, (23, 0x80);

y

F Set Active */
IC_Reg\ite(Slave AddressIIC, 0x26, QBI);

oy
-

Paoll data or use
intarmupt INT2

Check for interrupt
on pin INT2

Service interrupt
and claar

I* Sat Active *f
- . T Read INT_SOURCE™/
('E—REQMHS'“EME"E““C' D8, D), CNT_S = IC_RegRead(SlaveAddressIiC, u-:nz::)
" Read STATUS Register */
5TA = IIC_RegRead SlaveAddressilC, 0x00);

¥ Is SRC_DRDY Set*/
{INT_S & 0xB0) == TRUE

# Is Data Ready */
(STA & 0x08) == TRUE

/* Read DUT_P and QUT_T*/

J* Read OUT_Pand OUT_T*/f
[* This clears the DRDY Interrupt *f

J* This clears the DRDY Interrupt */

OUT_P_MSE = IC_RegReadSlavefddressiIC, tn01);
OUT_P_CSE = IC_RegReadSlavenddressiic, 0x02);
OUT_P_LSE = IIC_RegReadSlavetddressiiC, 0x03}
OUT_T_MSB = IIC_RegRead SlaveAddressiiC, 0x04);
OUT_T_LSE = lIC_RegRead{SlavetddressiiC, 0u035

OUT_P_MSE = IIC_RegReadS|aveddrassiiC, 0x01);
OUT_P_CSE = IIC_RegReadSlavesddressiic, 0xd2);
OUT_P_LSE = IC_RegRead|SlavenddressiiC, Ox03);
OUT_T_MSB = II_RegReadslavesddrassiiC, 0x04);
OUT_T_LSE = IC_RegRead|SlavedddressiiC, 0x05 )

Oear Interrupt

Figure 5. Polling or Interrupt - No FIFO

MPL3115A2

| NCP1503

Topic 3

Page 157 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The registers we need to use are summarized below:

7 Register Descriptions

Table 9. Register Address Map

Resat
hen
Register w Auto-Increment
Address Name Resat S'It'f‘l' Type Add Commant
Active
0x00 Se"?g;_i%ﬁ]m's'e' 000 | Yes | R 0x0 Alias for DR_STATUS or F_STATUS
) . Root pointer to
0x01 Pressure Data Out MSB ox00 | R 0x02 0x01 BI[SI_:.Z'WPDT 2068 Pressure and
(OUT P_MsB)12) " s * reaklime FIBSSUT® | Temperature FIFO
sample.
data.
0x02 P'?;fo"g;gﬁ'}ﬁfﬁ ox00 | Yes | R 0x03 Bits 4-11 of 20-bit real-time Pressure sample
0x03 Pltzsls‘l:ePDa&g}L[I;EKLzﬂaa 00D | Yes R O Bits 0-3 of 20-bit real-time Pressure sample
Temperature Data Out MSB Bits 4-11 of 12-bit real-ime Temperature
0x04 (OUT T MSB)()@) ox00 | Yes | R 0x05 cample
Temperature Data Out LSB Bits 0-3 of 12-bit real-time Temperature
0x05 (OUT_T LS8 0w00 | Yes R Ox00 sample
PT Data Configuration Register '
0x13 {PT_DA'E_CFG}“KB? w00 Na RAN w4 Data event flag configuration
0x26 {g‘.’r:'f' 2:3'7}%‘1] ox00 | No | RMW ox27 Modes, Oversampling
ox27 {g?rrgl‘" ::gi;;ﬁﬁl 000 | No | R 0328 Acquisition time step
0x28 é‘;‘:‘l_o'::gl;;ﬁﬁ] 000 No R 028 Interrupt pin configuration
0x29 {g‘frr:f' 2:3':;?,'33] oo | No | R Ox2A Interrupt enables
0x2A CTRL REGa 0 ox00 | No | RMW 0x28 Interrupt output pin assignment

Here are some points about the device, the flowchart, and the registers involved.

e The device’s I12C address is 0x60 (i.e. 0b1100000r), so we need to communicate
with it using 0xCO. Instead of making a variable to hold the slave address as shown
in the flowchart, we can just put 0xCO in the slave address parameter field.

e We'll be using our function “IICO_Write” in place of their “IIC_RegWrite” function.

e During configuration, we need to set up Control Register 1 (0x26). The other
registers default to conditions that are acceptable for us at this point. Here are the

bits of CTRL_REG1:
Table 57. CTRL_REG1 Register

7 [ 5 4 3 2 1 0
R [1]
W ALT RAW 052 051 050 RST 05T SBYB
Reset [1] 0 0 0 0 [1] 0 0

Following the flowchart, we want to set this up for an “over-sampling rate” of 128 by
setting the OSn bits to produce 27. Also, the flowchart suggests setting b7, which
puts the device into “Altimeter” mode instead of “"Barometer” mode. This results in
the value 0b10111000, or, as indicated in the flowchart, 0OxB8. We actually want to
operate in “"Barometer” mode, so we'll send 0b00111000 instead.

| NCP1503 Topic 3 Page 158 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems |

e The flowchart then sends 0b00000111 (0x07) to the PT_DATA_CFG register to
enable data flags so that pressure events (PDEFE) or temperature events (TDEFE)
are available, using Data Ready Event Mode (DREM).

Table 37. PT_DATA_CFG Register
7 ] 5 4 3 2 1 4]
R| [i] | [i] | [i] | [i] | [1]
Res\:lll [i] | [i] | [i] | [i] | [i] [i] [i] [i]

e The last step in the initialization part of the flowchart takes us back to CTRL_REG1,
where we take it out of standby (SBYB) by putting a 1 in b0. Since there isn't a
good way of just use OR to change a single bit, we overwrite the register with the
new value: 0b00111001. This is shown in the flowchart as 0xB9, but that was for
Altimeter mode, so, for Barometer mode, we don’t want the MSB set.

¢ Simon Walker indicates that, for reliable operation, we now need to read the Status
register once before entering the main loop that repeatedly checks the status
register, then reads the data registers when valid data is indicated.

e Inside the loop, as indicated in the flowchart, we wait until the MPL3115A2 reports
the availability of good data, then we read the registers we're interested in. For
pressure information, these would be 0x01, 0x02, and 0x03. For temperature
information, these would be 0x04 and 0x05.

e The bits of the status register (0x00) are as follows:
Table 12. DR_STATUS Register

I DREM | FDEFE ‘ TDEFE ‘

7 6 5 4 3 2 1 a

R | PTOW | POW | TOW | 1] | FTDR | PDR | TDR | a |

W | | | I | | | |
Reset 0 o 0 0 0 0 0 0

The only bit we need to concern ourselves with is b3: PTDR stands for “Pressure and
Temperature Data Ready”. We have to wait for this bit to be SET before we can read
valid data from the other registers. (If you wanted, you could watch for "PDR" or
“TDR" instead, if you only needed pressure or temperature data.)

The values in the data registers are presented in a slightly complicated format, in that they
are left-justified (occupying the upper bits and leaving the least significant bits as zeros),
and they have a fractional component.

The pressure data is in Pascals (Pa), and is provided as 20-bits in Q18.2 format. This
means that the most significant 18 bits are the hexadecimal value of the pressure in
Pascals, and the other two bits are, in order, 2 (2°1) and % (272) Pascal weightings.

For example, the three-byte value for pressure can be interpreted as follows:

0x01 = 0b0110 1010
0x02 = 0b0111 0001
0x03 = 0b1001 0000

Pressure = 0b011010100111000110.01 = 108,998.25 Pa

The temperature is even more complicated, as it is returned as 2’s complement negative
12-bit fractional data in °C, provided in Q8.4 format (although the data sheet says Q12.4,
but that would 16 bits). The whole-degrees portion is in the first byte (Register 0x04), and
the fractional part is the high nibble of Register 0x05, accurate to 1/16™ of a degree (274).

If you just want to display whole degrees, you can ignore Register 0x05 and just use
Register 0x04. To display negative temperatures in a form suitable for human consumption
(pretty important in Alberta!), you would need to perform a 2’s complement conversion on
the negative values to find their magnitude, then simply insert a “negative” sign in front of
the value.

A simpler way to handle both of these sensor values is to use “sprintf” and put the
formatted results into printable strings — see the discussion at the end of using the SCI.

| NCP1503 Topic 3 Page 159 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

M41T81 Real-Time Clock — Standard 8-bit Reads and Writes

Back to I°C devices: The M41T81 Real-Time Clock is designed to do either multi-byte
communication (like the EEPROM), or individual register reads to get the information we're
looking for, and individual register writes to change the time, date, or control bits.

As with the other devices we’ve covered in this course, there are a lot of features we don't
have time to cover in this brief overview. However, the full details can be found in the data
sheet for this device, available from the Internet or in Moodle for this course.

The designers of this device chose to present the data in BCD, which is quite helpful, in that
we don't need to do conversions before we display its results.

Since the results are in BCD, you need to work with the two nibbles in a byte to get the full
number (e.g.) to get 35 s, you read register 0x01, in which the upper nibble will contain 3
(once ST is masked off) and the lower nibble will be 5.

The M41T81 has likely been running on your board ever since it was assembled, and it
contains a lot of information, which, at this point, is almost guaranteed to be incorrect. This
device has its own internal 32.768 kHz crystal, so it doesn’t rely on the bus clock or an
external crystal oscillator. It has a backup battery with a circuit that detects when the main
board power is turned off, so it continues to maintain the time and any settings when the
board is turned off. It keeps track of time and date in hundredths of seconds, seconds,
minutes, hours, day of week, date, months, years, and even centuries (although just the
twenty-first and twenty-second centuries!), with leap years built in, so it is a true calendar
as well as a clock.

Along with current time and date, the device has the capability of being used as an alarm,
as a square wave generator, and as a microcontroller monitoring device called a
“watchdog”. Here’s a list of its internal registers, along with a description of the labels used
for control bits that are scattered throughout the registers:

M41T81 Clock operation

Table 2. Clock register map“'

Addr Function/range BCD
D7 | D& | D5 | D4 D3 | D2 | DA | Do format
00h 0.1 seconds 0.01 seconds Seconds 00-99
01h ST 10 seconds Seconds Seconds 00-59
02h 0 10 minutes Minutes Minutes 00-59
Century/
03h CEB CB 10 hours Hours (24 hour format) holirs 0-1/00-23
04h 0 0 0 | 0 0 Day of week Day 01-7
05h 0 ] 10 date Date: day of month Date 01-31
06h 0 0 0 | 10M Month Manth 01-12
07h 10 years Year Year 00-99
08h ourt FT S Calibration Control
05h 0 BMB4 | BMB3 | BMB2 | BMB1 | BMBO | RB1 | RBO | Watchdog Keve.
0Ah | AFE |SQWE | ABE | Al10M Alarm month Almenth | 0112 | g fs'i n bit
FT = Frequency test bit
0Bh RPT4 | RPTS Al 10 date Alarm date Al date 01-31 ST = Stop bit
och | RPT3 | HT Al10h Alarm h Al hy 00-23 | 0= Mustbe setto 'l N
our arm hour our BMB0-BMB4 = Watchdog multiplier bits
0Dh RPT2 Alarm 10 minutes Alarm minutes Al min 00-59 CEB = Century enable bit
CB = Century bit
OEh RPT1 Alarm 10 seconds Alarm seconds Al sec 00-59 OUT = Qutput level
ABE = Alarm in battery backup mode enable bit
0Fh WDF AF 0 0 0 0 0 0 Flags AFE = Alarm flag enable “aF . .
10h 0 0 0 0 0 0 0 0 Reserved RBO-RB1 = Watchdog resolution bits
RPT1-RPTS = Alarm repeat mode bits
11h 0 0 0 0 0 1] 0 0 Reserved WDF = Waichdog ﬂadq (read only)
AF = Alarm flag (read only)
12h 0 0 0 0 0 0 0 0 | Reserved SQWE = Square wave enable
RS0-RS3 = SOW frequency
13h RS3 RS2 RS1 RS0 0 0 0 0 saw HT = Halt update bit

| NCP1503 Topic 3 Page 160 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Notice again that the data is presented in Binary-Coded Decimal (BCD), using two nibbles
for each item. The number of bits required for the most significant digit depends on the size
of the particular digit, so, for example, the month only needs a zero or a one for its first
digit, the day of the month requires two bits for its first digit to cover the possibilities of O,
1, 2, or 3, and the year requires all four bits to represent values from 0 to 9.

Since the other bits aren’t needed for the data, some of them get used for control and
reporting functions. A very important one is "ST”, which is the MSB of the “seconds”
register. This bit stops the clock crystal, and the registers hold the last available data.

Another bit that’s very important is b6 of the Alarm Hour register: “HT”. When the power
on the board goes down and the Real Time Clock switches to battery, this bit is set to halt
the updating of the registers, while the clock continues to run in the background. This
allows the user to write code to read the registers on power-up to find out when the power
failed, before reactivating the normal operation in which the proper time will be reported.

So, if you want to know when the power went down, you can read the time registers before
clearing the HT bit to get the power-down information; in any case, you will need to clear
the “HT” bit to let the clock report the current time.

The “ST” bit must be cleared to allow the clock crystal to run. Once this bit has been
cleared, it will stay cleared until it is deliberately set, so it's best to check to see if it needs
to be cleared before doing anything to it. If you go through the process of clearing it
unnecessarily, you may lose the occasional second on the clock, since this bit is in the
“seconds” register. Why? Because to clear the ST bit, we need to read the seconds
register, clear the ST bit in the read-in value, then write the resulting value back into the
seconds register. If the seconds register updates during this process, the value written
back in will be the old value, which is one second behind. Also, if you clear the ST bit
before you clear the HT bit, you will be reading in the seconds value that was held for
reporting the power-down, and will write that back in, overwriting the current seconds value
with an old (and incorrect) value.

Unlike interrupt flags, these bits are cleared by writing ‘0’ to them.

The Real-Time Clock’s I2C address isOx68, which translates into 0b1101000r for our
purposes. The code snippet on the following page shows how to start the clock if it isn't
running, how to allow it to report current data, and how to read in current data from the
registers associated with seconds, minutes, hours, date, month, and year. The actual
process of displaying the data is not shown, as that would be dependent on the display
device chosen.

| NCP1503 Topic 3 Page 161 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

//”ﬁgéHT=IICD_Read(DHDD,DHDC); -
; IICO Write{O0=xDO,0=0C, (Ha=HT&O0DL101111113); ssclear the Halt bit ™
/

| Sec=IIC0_Read(0=zD0,0x01): <71f =et, clear the ST bitlk
( 1f((Secé0bl0000000y!1=0) IICO Write{O0xD0, 0x01,{Sec&0b01111111)): |

<#SetTine (0=30, 0=25 . 0=10, 0=02 ., 0=07 ., 0=x12, 0=15): |

for (::) soendless program loop

' 1

o

Main Program Code Jf
v

f
H Sec=11C0 Read{OxD0,0=x01)&0B01111111; [
Min=IIC0 Read(0xD0,0x02)&0b01111111; f
| Hr=IIC0_Read{0xD0,0x0334&0b001111117; !
| Date=IIC0_Read(0xD0O, 0x05)&0b00111111 ; f
| Mth=IIC0_Read(0xD0, 0x06)&0b00011111; /
\ Tear=I1I1C0_Read({0=xD0,0=x07): f
e

A\ TpdateDi=play():

= S —_—

In this code snippet, notice there’'s a “"SetTime” function call that has been commented out.
The code was run once with that line included, then the version of the code with it excluded
was down-loaded to the microcontroller so that further resets or power-ups will not set the
time back to the numbers hard-coded into this routine. Clearly, a more sophisticated
means of setting the clock would be useful - for example, a function that responds to a
switch press if the user wants to set the time.

Notice that all of the values sent to the “SetTime” function are indicated as hexadecimal:
that’s because BCD, which is what the clock is expecting, isn’t decimal - it's a binary (or
hex) code used to represent decimal values. So, 0x31 represents 31 minutes in the second

byte of the function call.

| NCP1503 Topic 3 Page 162 |




| CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

Position Information with the LSM303DLHC — Standard 8-bit Reads and Writes

(Optional topic) Another device that can be controlled and accessed using eight-bit address
and data reads and writes is theLSM303DLHC eCompass Module. (It can also be accessed
using multi-byte sequences, but we'll stick with the easier approach.) This unit contains a
three-axis accelerometer, a three-axis magnetometer, and, probably because everyone else
is doing it, another temperature sensor. Here’s a clip from the datasheet.

LSM303DLHC Block diagram and pin description

1.2 Pin description

Figure 2. Pin connections

DIRECTION OF
DETECTABLE

ACCELERATIONS |1_| I:l I:I I:l D EI
[ -
100000

DIRECTION OF BOTTOMVIEW
DETECTABLE
MAGNETIC FIELDS
TOR VIEW
ANV
Table 2. Pin description
Piing# Name Function
Vdd_IO Power supply for 10 pins
2 SCL Signal interface 12 serial clock [SCL)
3 SDA Signal interface 12 serial data (SDA)
4 INT2 Inertial interrupt 2
5 IMT1 Inertial interrupt 1
[} C1 Reserved capacitor connection (C1)
T GND 0V supply
2] Reserved Leave unconnected
o DRDY Diata ready
10 Reserved Connect to GND
1 Reserved Connect to GND
12 SETP 5/R capacitor connection (C2)
13 SETC 5/R capacitor connection (C2)
14 \dd Power supply

3-Axis Accelerometer

You should recall, from earlier physics-related science courses, that objects near the earth’s
surface accelerate at a rate of approximately 9.81 m/s? if allowed to fall freely. This is
referred to as 1.0 g (not to be confused with the SI unit for grams - we just ran out of
letters!). The accelerometers in the LSM303DLHC report acceleration in milli-g’s, which
shows up in the datasheet as mg, again, not to be confused with milligrams.

The seven-bit I°C address for the accelerometer is 0x19, so the eight-bit representation of
this is 0b0011001r.

| NCP1503 Topic 3 Page 163 |




CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Embedded Systems

There are a bunch of internal registers associated with the accelerometer:

Register
Hame Type

Hex
INT1_CFG_A w 30
INT1_SRC_A r Ed
INT1_THS_A rw 3z
INT1_DURATION_A w 33
INT2_CFG_A w 24
INT2_SRC_A r 35
INT2Z_THS_A rw 36
INT2_DURATION_A W ar
CLICK_CFG_A W 38
CLICK_SRC_A w 35
CLICK_THS_A w 3A
TIME_LIMIT_A W aB
TIME_LATEMCY _A W ac
TIME_WINDOW_A w D
Reserved (do not modify) 3E-3F

Register
Name Type

Hex
Reserved (do mot modify) 00 -1F
CTRL_REGT_A rw 20
CTRL_REGZ_A W 21
CTRL_REG3_A w 22
CTRL_REG4_A W 23
CTRL_REGS_A w 24
CTRL_REGA_A w 25
REFERENCE_A W 25
STATUS_REG_A r 27
OUT_X_L_A r 28
QUT_X_H_A r 25
OUT_Y_L_A r 24
QUT_¥_H_A r 28
OUT_Z L A r 2C
OUT_Z H A r 2D
FIFO_CTRL_REG_A W 2E
FIFO_SRC_REG_A r aF
INT1_CFG_A w 30
INT1_SRC_A r El
INT1_THS_A w a2
INT1_DURATIOM_A w 33

That's a lot of registers! At least they still fit in an 8-bit internal address space, so we don’t
need a new routine to set up this IC. The registers on the following pages the ones that are
significant to us at this point, but you may find you can make use of some of the more
esoteric features of this chip, such as the free-fall sensors (possibly used to park a hard-
drive on a falling laptop), or the “click” sensor (possibly used to determine if someone is
tapping an interactive display).

| NCP1503

Topic 3

Page 164 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

7441  CTRL_REG1_A (20h)

Table 18. CTRL_REG1_A register
CDR3 | ODR2 | ODR1 | ODRO LPen Zen en en

Table 19. CTRL_REG1_A description

ODR[30] Data rate selection. Default value: 0000
- ) {00D0: power-down, others: refer to Table 20)
LPen Low-power made enable. Default value: 0
{0: normal moade, 1: low-power mods)
Zen Z-awis enable. Default value: 1
(0: Z-axis disabled, 1: Z-axis enabled)
ven ‘f-axis enable. Default value: 1
{0: Y-axis disabled, 1: ¥-axis enabled)
Xen X-axis enable. Default value: 1
(0: ¥-axis disabled, 1: ¥-axis enabled)

ODR[3:0] i= used to set the power mode and ODR selection. In the following table bit
selection of ODR [3:0] for all frequencies is shown.

Table 20. Data rate configuration

ODR3 0ODR2 ODR1 ODRO Power mode and ODR selection
O 0 4] 0 Power-down mode
o 0 o 1 Mormal { low-power mode (1 Hz)
0 ] 0 Mormal / low-power made (10 Hz)
o 0 1 Mormal { low-power mode (25 Hz)
0 1 o 0 Mormal / low-power made (50 Hz)
o 1 o 1 Mormal { low-power mode (100 Hz)
0 1 1 0 Mormal / low-power mode (200 Hz)
o 1 1 1 Mormal { low-power mode (400 Hz)
1 0 o o Low-power mode (1.620 kHz)
1 0 i 1 Mormal (1.244 kHz) / low-power mode (5,376 kHz)

From this set of tables, we can determine the values needed to enable the three axis
sensors, turn on the accelerometer, and set up its refresh rate. Note that the default
condition, 0b00000111 (found in the Register address map table of the data sheet), disables
the accelerometer, so we have to deal with this register. For our purposes, a speed of

100 Hz in normal mode, with all three axes enabled is suitable: 0b01010111.

For now, we'll leave control registers 2_A, 3_A, 5_A, and 6_A as they are - they deal with
interrupts and some of the features that are less useful to us at this point.

Table 21. CTRL_REGZ_A register
| HPM1 | HPMOD | HPCF2 | HPCF1 | FDS |H='CLICF.| HFISZ | HFIST |

Default 0b00000000

Table 24. CTRL_REG3_A register
|I‘_CLICP:| 11_AOH | 1_ADIZ | 11_DRDY1 | 11_DRDY2 | H_WTM | 11_OVERRUN | ~ |

Default 0b00000000

Table 28. CTRL_REGS_A register
| BOOT | FIFO_EN | - | - |LIR_NT1 | D40 _INT1 | LIF_INT2 | D4D_INTZ

| Default 0b00000000

Table 30, CTRL_REGE_A register
|I2_CLICKen |I2_INT‘ |I2_INT2 |BDEIT_I1 |='2_ACT | |—|_|.At:'rw£

-] Default 0b00000000

| NCP1503 Topic 3 Page 165 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

714  CTRL_REG4_A (23h)

Table 26. CTRL_REG4_A register
| BDU | BLE | F51 | FS0 HR oltl | ol" |3|M|

1. This bit must be set to D' for comect operation of the device

Table 27. CTRL_REG4_A description

BOU Block data update. Default value: D
(0: continuous update, 1: cutput registers not updated until M5B and LSB
have bean read

BLE Bigllittle endian data selection. Default valus 0.
(0 data LSB (@ lower address, 1: data M5B (@ lower address)

Fs[1:0] Full-scale selection. Default value: 00
(002 g, 01: x4 g, 10: 28 g, 11: £16 g)

HR High-resolution output mode: Default value: 0
(0: high-resalution disable, 1: high-resolution enable)

SIM 5P serial interface mode selection. Default value: 0
(0 4-wire interface, 1: 3-wire interface).

For this, you need to know something you may have learned earlier: the difference
between Motorola-type and Intel-type microprocessors. Motorola-type processors are
referred to as "Big-Endian”, as sixteen-bit values are accessed MSbyte first, LSbyte last;
Intel-type processors are referred to as "Little-Endian”, as sixteen-bit values are accessed
LSbyte first, MSbyte last. Although the register tables tell us that the MSbyte for each
accelerometer appears at the lower of the two addresses, that isn’t necessarily the case: in
Little-Endian mode (the default), the lower of the two addresses is actually the LSbyte,
which can be very confusing. So, we want to put this device into Big-Endian mode.

Also, we need to determine the full-scale readings for the accelerometer. This is a good
place to note that the values are returned as 16-bit 2’s complement signed integers - but
we’ll be reading them as two eight-bit values. More on that later. The FS bits determine
the range that can be covered by the device. For high sensitivity, we’ll choose the £2 g
scale (00). Given that this is a 12-bit device, the step size is

4g

stepsize = o

2—1 , or 0.977 mg/step (Don’t believe this value too quickly!)

0.997 looks eerily close to 1 mg/step. In fact, in the datasheet, Table 3, the sensitivity is
shown as below:

F5 bit set to 00 1

F5 bit set to 01

LA So | Limear acceleration sensitivity mgLSB
F5 bit set to 10 4
F5 bit sat to 11 12

The datasheet doesn’t indicate which of these values is correct - it could be that the “+2 g”
is an approximate value and the sensitivity is actually 1 mg/step for a true scale of

+£2.047 g, or it could be that the full scale is accurate, and the sensitivity is rounded. We’'ll
assume that the 1 mg/step is correct, as this seems to be verified empirically.

A suitable entry for CTRL_REG4_A is 0b01001000.

| NCP1503 Topic 3 Page 166 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The data shows up in the following registers:
749  OUT_X_L_A (28h), OUT_X_H_A (29h)

X-axis acceleration data. The value is expressed in two's complement.

7110  OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh)

Y-axis acceleration data. The value is expressed in two's complement.

7441  OUT_Z_L_A(2Ch), OUT_Z_H_A (2Dh)

Z-axis acceleration data. The value is expressed in two's complement.

7112 FIFO_CTRL_REG_A (2Eh)

Data is available as indicated by the status register:
7.1.8 STATUS_REG_A {27h)

Table 34. STATUS_A register
|z'rx0R |z::|q |'mR |xoq Z¥XDA |ZDA |‘-’DA |x3A |

The bit we're interested in is ZYXDA, which tells us that all three values are available. For
simplicity, we’ll typically work with a blocking loop that waits for this flag to come TRUE.
However, this could result in the program hanging if something is wrong with the I?C bus or
the accelerometer IC.

Since the I?C bus only handles eight-bit values, we’ll need to read two bytes to get a
complete value. We can either do that by using our existing IICO_Read() routine twice, or
we can make a new routine that reads the two bytes and combines them into a single
sixteen-bit value. If you want to go that route, here’s one version of a working routine.

int IICO_REeadDlé{unsigned char cAddr. un=signed char cReg)

int iData;
char cRead:

while({IICO_IEBSR & 0b0O0Q100000G;
ITCO_IECE |= 0b00110000;

IICO_IEDE = chddr & 0b11111110;

while( ! {IICO_IESE & 0bO0O0O0OOO10);:

IIC0_IBSR |= 0bOODO0ODLO;
IICO_IEDR = cReg:

while( ! (IICO_IBSR & 0bODOODO1O));

IICO_IESE |= 0b0O00OOD10;
IICO_IECE |= 0bOOOOO100;

IICO_IEDR = (chddr | 0bO0OODOOOL):
while(!(IICO_ IBSE & 0b0O000ODO1O)):

IICO_IESE |= 0b0O00OOD10;

ITCO_TECE &= 0b11100111;
cRead = IICO_IEDR;

while(!(IICO_IBSE & 0b0OO00O0DOL0)):

IICO_IESE |= 0b0000O0O0D10;
iData = IICO_IBDRE#*256;

IICO_IECE |= 0b00O0O1000;
cRead = IICO_IEDR:

while(!(IICO_IBSE & 0bODOODO10));

IICO_IECE &= 0bl1011111;
IICO_IESE |= 0b00OOOO10;
iData +=IIC0_IEDR;

return iData:

b

ssywalt for not busy flag
Somicro as master, start transmitting

ssplace address on bus with ~Write
sswait for flag
ssclear flag

#slocate deszired register
sswait for flag
<solear flag

SSrestart

s«place address on bus with Read
sswait for flag
ssolear flag

ssread byte with ACH
ssfake read

sswalit for flag
<solear flag

ssread first byte

ssread byte with HAK
ssfake read

sswait for flag
SS=hop

ssclear flag
sszecond byte

The data you read back will be formatted at 16-bit 2’s complement, but it's actually 12-bit
2’'s complement left justified. In other words, the bits you're interested in are in the upper
three nibbles. A quick way to fix this is to divide by 16, which will do an arithmetic shift left
by 4, keeping track of the sign of the number.

| NCP1503 Topic 3 Page 167 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

3-Axis Magnetometer and Temperature Sensor

(Optional topic) Working with the earth’s magnetic field is a surprisingly complex problem,
as it is three-dimensional, and quite weak compared to the magnetic fields produced by
electrical currents and magnets in equipment and the residual magnetism in metal used in a
building or its furnishings. If you need to make a proper compass, you will find it not to be
a trivial exercise. In this course, we will simply look at what you need to do to get the
values from the magnetometer - it's up to you as to what you want to do with them!

The magnetometer is a separate device inside the LSM303DLHC, at a different I°C address
and with different configurations. For example, there’s no “"Big-Endian/Little-Endian” issue:
the registers are just MSbyte-LSbyte, in that order.

The magnetometer (and the temperature sensor) address is Ox1E, or 0b0011110r.
There are three control registers, all of which need our attention.
7.21 CRA_REG_M {00h)

Table 70. CRA_REG_M register
TEI'\-'I:_EHI| ot | ol | Do2 Do Doo olt) ol

1. This bit must be s=t to ‘0" for comect operation of the device.

Table 71. CRA_REG_M description

TEMF EN Temperature sensor enable.

- 0: temperature sensor disabled [default), 1: temperature sensor enabled
DoR:0] Data c:utpl.ft rate bits. These I::irsys&la'. '._‘he rat_e at M‘nd‘u data is written to all three data

output registers (refer to Table 72). Default value: 100
Table 72. Data rate configurations
Do2 DO Dion Minimum data ocutput rate (Hz)

o o o 0.75

i} [u] 1 15

o o 30

i} 75

1 o o 15

1 [u] 1 30

1 o 75

1 220

A value of 0b00011000 in CRA sets the device up for a 75 Hz refresh rate, with no
temperature sensor. 0b10011000 enables the temperature sensor, if you want it.

| NCP1503 Topic 3 Page 168 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

722  CRB_REG_M {01h)

Table 73. CRE_REG_M register
GNZ | G | GND | olt) ol ot olt! olt)

1. This bit must be setto ‘0 for comect operation of the device.

Table 74. CRE_REG_M description

GN[Z:0] Gain configuration bits. The gain configuration is common for all channels (refer to
' Table 75)
Table 75. Gain setting
Sensorinput | cain X ¥ and Z Gain Z
GM2 GH1 | GNOD field range Output range
[Gauss] [L5B/Gauss] [L5B/Gauss]
o] 0 1 1.3 1100 280
o] 1 O 1.8 855 T80
o ! ! 25 gro 800 DxFBO0—0ROTFF
1 0 o +0 450 400 (-2048 to +2047)
0 1 +=7 400 355
1 o +5.68 330 205
1 1 +B.1 230 205

The CRB register sets up the sensitivity of the magnetometer. Although the middle column
claims to set the gains equally for all three channels, the next column over indicates that
the Z channel has a different sensitivity. We'll go with the assumption that the Z column
was put in the datasheet for a purpose, so the middle column must only apply to X and Y.

The units are unusual: LSB/gauss. This is the inverse of the step size, so the bigger the
number, the more sensitive the device, as shown in the fourth column. Another thing that’s
unusual is the use of “gauss”, a holdover from an old measurement system based on
centimetres/grams/seconds (CGS) rather than the SI system’s metre/kilogram/seconds
(MKS) standard. In the MKS system, the tesla is used, and is 10,000 times bigger than a
gauss.

For greatest sensitivity, we’'ll use a value of 0b00100000 for CRB. This makes the step-size
for the X and Y channels 0.909 mG/step, or 90.9 nT/step. The Z channel sensitivity is
1.02 mG/step, or 102 nT/step.

723  MR_REG_M (02h)

Table 76. MR_REG_M register
| DI1I | :II:'| | E:1Z | D”:' | :J['I | E:1Z | MD1 | MDD |

1. This bit must be set to "0’ for comect operation of the device.

The MR register defaults to 0b00000011, which puts the magnetometers into sleep mode.
Values of 00 are needed in the MD1 and MDO bits to put the device into “"Continuous
conversion” mode.

Once all of that is set up, the data can be read when the LSB of the status register goes
HIGH:

727  SR_REG_M (09h)

Table 79. SR_REG_M register
— | — | — — - _ LocK DRDY

| NCP1503 Topic 3 Page 169 |




CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

The data is available as shown below:
7.2.4 OUT_X_H_M (03), OUT_X_L_M {04h)
X-axis magnetic field data. The value is expressed as two's complement.
7.25 OUT_Z H_M (05), OUT_Z_L_M (06h)
Z-axis magnetic field data. The value is expressed as two's complement.
7.2.6 OUT_Y_H_M (07), OUT_Y_L_M (08h)

Y-axis magnetic field data. The value is expressed as two's complement.

This time, the data is right-justified! This means there’s no need to shift the data to the
right - it arrives as a proper 2’s complement signed number, with the upper four bits
stuffed appropriately.

If you want to use the temperature sensor and you’ve enabled it earlier, its values are
available as shown below:

7.29  TEMP_OUT_H_M (31h), TEMP_OUT_L_M (32h)

Table 84, TEMP_OUT_H_M register
| TEMP11 | TEMP10 | TEMPS | TEMPE | TEMPT | TEMPS | TEMPS | TEMP4 |

Table 85. TEMP_OUT_L_M register
|TEMP3|TEMP2|TEMP‘|'I_:MPD| _ | — | - | _ |

Table 86. TEMP_OUT resolution

TEMP[11:00 Temperature data (8 L5B/deg - 12-bit resolution). The valus is expressed as
wo's complement.

Note that this is left-justified, so you’ll need to divide by 16 to move it into proper position.
The value is 2’s complement signed, and has a resolution of "8 LSB/deg”, or a step size of
0.125 °C/step. That means that the three LSB's are fractional: 1/2, 1/4, and 1/8.

| NCP1503 Topic 3 Page 170 |




| CMPE2200

COMPUTER ENGINEERING TECHNOLOGY

Device with 16-bit Internal Addresses (e.g. EEPROM) — Write and Read Functions
(Optional topic) In order to use the EEPROM on your board, you need 16-bit address

versions of these two routines, shown below:

void ITICO Writeilé{unsigned char cAddr,
{

int iiddr, unsigned char cData)

unsigned char clUpper = (unsigned char)(iiddr-256):
unsigned char clower = (unsigned char){iiddr&0b0000000011111111);

while(IICO_IESE & 0b00100000j;
IICO_IEBCR |= 0bO0110000;

IICO_IEBDE = (chAddr & 0b11111110):
while( ! {IICO_IESE & 0bOOOOOO10)):

IICO_IBSE |= 0LOOOOOO1O0:
IICO_IBDE = clUpper:

while( | {IICO_IESR & ObOooooooioyy:

IICO_IBSE |= 0b0O0OOOOO10;
IICO_IEDE = clower:

while( | {ITCO_IBSE & 0h00O0O0O10Y):

IICO_IBSE |= 0LOOOOOO1O0:
IICO0_IEDE = cData;

while( ! {IICO_IBSE & 0bOOOOOO10}));

IIC0 TBCR &= 0b11001111;
ITCO0_IESE |= 0ObOOOOOOLO;

b

sosyalt for not busy flag
SAmicro as naster, start transmitting

ssplace address on bus with ~Write
sowalt for flag
Ssclear flag

Ssupper uns=igned char of address
Sewalt for flag
ssclear flag

S lower unsigned char of address
Sswalt for flag
ssolear flag

srmend dats

srywalt for flag

Soztop transmitting, exit Haster mode
srolear flag

un=zigned char IIC0 Feadilé{unsigned char cAddr. int iAddr)
{

unsigned char cData;
unsigned char clUpper =
unsigned char clower =
while(IICO_IESE & 0b0OO100000):
IICO_IBCE |= 0LOO110000:

IICO_IEBDE = (chAddr & 0b11111110):
while( ! {IICO_IESE & 0bOOOOOO10)):

IICO_IBSE |= 0LOOOOOO10:
IICO_TEDE = clUpper:

whilef | (IICO_IBSE & 0b00000OD10}):

IICO_IBSE |= 0LOOOOOO1O0:
IICO IEDRE = clower:

while( ! (IICO_IESE & 0bO000OO010));

IICO_IEBSE |= 0b0O0OOOO10;
IICO_IECE |= 0b0O0OOO100;

IICO_IEDR = {chddr | 0b0O0O0OOOL):
while( ! (IICO_IESE & 0bOOOOOOL0));

IICO_IESE |= 0bO00OO0O10;

IICO_IEBCR |= 0bO0OOL1000O;
IICO_IBCR é&= 0b11101111:
cData = ITCO_IEDE:

while( | {IICO_IBSE & 0bO0O0OOOO10)):

IICO_IBCR é&= 0bl11011111:
IICO_IBSE |= 0bL0O0OOOOO10;
cData = IICO_IEDE:

return cData:

}

{unsigned char)(iiddr-256)
{unsigned char){iiddr&0bO000OOOOL11111111):;

sowalt for not busy flag
SAmicro as mnaster, start transmitting

ssplace address on bus with ~Write
Sewalt for flag
ssclear flag

Ssupper unsigned char of address
Sswalt for flag
ssolear flag

s#lower un=igned char of addre==s
Sswalt for flag
ssolear flag

SSrestart

ssplace address on busz with Read
sswalt for flag
soolear flag

ssreading 1 unsigned char only
Soreceive unsigned char

sonot actually — starts the process
sowalt for flag

SSztop

Swclear flag

S<for real this time

If you want to transfer an entire array of bytes between the micro and the EEPROM, you
would want to make versions of these routines that can write or read a bunch of bytes
sequentially. The EEPROM is designed to operate in a special paging mode, in which a full
“page” of 128 bytes is read from or written to the device. This requires starting at a page-
delineated address, and also involves pointers to string arrays for the microcontroller. The
information as to how to manage “Page Write” or “Page Read” transfers is available in the
data sheet for the 24AA512 EEPROM. This topic goes beyond the scope of this course, but
the following gives you a starting point. Multiple reads and writes involve issuing an I2°C
ACK signal between each byte transferred, with a NAK signal at the end; unlike normal
single byte transfers, which only issue NAK signals. With the 24AA512, since it operates
more slowly than the I°C bus, we need to wait until it’s ready for the next byte. The only
way to handle this is to send the byte and see if it's acknowledged; if it isn't, we send the

| NCP1503

Topic 3

Embedded Systems

Page 171 |



CMPE2200 COMPUTER ENGINEERING TECHNOLOGY Embedded Systems

byte again and keep doing so until it is acknowledged. With all of this hand-shaking, the
possibility of hanging up the program waiting for a flag, an ACK or a NAK looms large. It's
best to write software that will only wait so long, then returns an error code to indicate that
the system has failed. As previously mentioned, Simon Walker has written an extensive set
of I2C library components that handle multiple reads and writes, along with page reads and
writes, all of which have escape routes in case of failure. If you find yourself using I°C
devices on a regular basis, you should talk him about how to use his library components.

I°C Reliability Measures

As indicated in the previous discussion, you probably discovered, with the simple routines
created for your library, that the I°C bus sometimes goes insane (mostly when you're
troubleshooting, as it’s pretty dependable in normal operation), and your program will hang
up waiting for a flag, often in IICO_IBSR. A partial solution to this, which you would see
implemented in Simon Walker’s library, is to put a counter into the
while(!(IICO_IBSR&0b00000010)) loop so that after a certain number of tries, say 5000 or
so, you exit the loop and return an error code. A typical error code is Ob11111111 (i.e.
OxFF), which, as a signed number, is -1, and as a Boolean value, is ~0. You may also want
to come up with more sophisticated “try-catch” routines that allow your program to continue
operating when the I°C bus goes down, including prompting an operator to cycle the power
on the board, if necessary.

Speaking of Simon Walker, he’s come up with library components that allow for a greater
layer of abstraction while, at the same time, allowing for the implementation of lower-level
I2C commands and management of error conditions. You may be provided with instruction
related to this approach to the I?C bus.

Parting Words

You have now touched on some of the capabilities of a very powerful microcontroller and a
selection of associated peripherals that were built into your microcontroller kit. You've
learned, with varying levels of proficiency, how to use a fairly wide range of peripherals,
both internal to the microcontroller, and external, connected through a number of different
interfaces. In addition, you've learned how to program the device in its native Assembly
Language and in C. You know enough about electricity and electronics to be dangerous.
With a bit of ingenuity, you could do some serious design work. Go forth and build things!

| NCP1503 Topic 3 Page 172 |




	Topic 1 – Embedded Systems Theory and the 9S12X Device
	Required supporting materials
	Rationale
	Expected Outcomes
	Where are you at?
	Embedded Controllers
	The MC9S12XDP512 Microcontroller
	The CNT MC9S12XDP512 I/O Board
	Types of Interfaces
	Port Addressing
	Switches and LEDs

	S12XCPU Assembly Language and the S12XCPU Microprocessor Core
	Accumulators and Registers
	Memory
	Memory Map


	Topic 2 –Microcontroller Programming
	Required supporting materials
	Rationale
	Expected Outcomes
	Connection Activity
	Assembly Language Fundamentals
	Assembler Directives
	Instructions
	Rudimentary Debugging Skills

	Documentation and Comments
	Using the Skeleton.txt File
	Flowcharting
	Subroutines
	Libraries of Subroutines

	S12XCPU Addressing Modes
	Inherent - INH
	Immediate - IMM
	Extended – EXT
	Direct – DIR
	Relative – REL
	Indexed – IDx, IDx1, IDx2, [IDx2], [D,IDx]
	Frequently-Used Instructions

	Masks and Bitwise Boolean Logic
	Commands affecting an entire register or memory location
	Commands affecting selected bits
	Commands responding to selected bits

	Using Variables and Constants
	Programming in C
	Setting Up an ANSI C Project
	ANSI C Skeleton File

	Switches and LEDs with ANSI C
	Functions
	Libraries of Functions
	Summary

	Numeric Manipulation
	Understanding Base 10
	Converting Binary to Decimal
	Converting Hexadecimal to Decimal
	Converting Hexadecimal to Binary
	Converting Binary to Hexadecimal
	8 Bit Arithmetic
	Working with 2’s Complement


	Topic 3 –Interfacing With Internal and External Devices
	Required supporting materials
	Rationale
	Expected Outcomes
	Connection Activity
	Disclaimer
	Interfacing the ICM7218A 8-Digit LED Display Driver
	ICM7218A Programming Tables
	Sending Data to the ICM7218A
	Seven Segment Display Library Components
	Seven-segment Display Control Using ANSI C
	SevSeg_Lib.h
	SevSeg_Lib.c

	Binary-Coded Decimal Representation and Manipulation
	Converting Hexadecimal Values to BCD
	Misc_Lib.h
	HexToBCD
	BCDToHex

	Switch Management
	Detecting Switch Change of State
	Debouncing
	SwCk() Debounced Switch Routine

	Parallel Interfaces:  Get On the Bus
	Data Bus
	Address Bus
	Control Lines

	LCD Displays Using the Hitachi HD44780U Controller
	The HD44780-controlled LCD on the 9S12X Development Kit
	Operation
	HD44780 Instructions
	LCD Controller Initialization
	LCD_Init
	LCD_Ctrl
	LCD_Busy
	LCD_Char
	LCD_String
	LCD_Addr
	LCD_Pos
	Character Generation
	LCD_CharGen Example
	LCD_CharGen8 Example
	ASCII Code Manipulation
	ASCII Table
	Upper and Lower Case ASCII Codes
	Hexadecimal to ASCII conversion

	The Serial Communications Interface
	Initializing the Serial Communications Interface
	SCI0 Library
	Communicating through the Serial Communications Interface
	Terminal Emulation
	SCI0_TxString
	The VT100/VT52 Terminal
	Escape Sequences
	Floating-Point Math in ANSI C
	<stdio.h>
	<math.h>

	Interrupts
	Interrupts in S12XCPU Assembly Language
	Interrupts using ANSI C
	Input-Driven Interrupt

	Accurate Timing
	Periodic Interrupt Timer (PIT)
	Enhanced Capture Timer
	Timer Initialization
	Setting the Timer Compare Event Duration
	Delays vs. Intervals
	Delay Function for Misc_Lib
	Interrupt-Driven Timer
	Real-Time Loop
	Input Capture and Pulse Accumulation
	Input Capture
	Pulse Accumulation

	A To D Conversion
	Setting up VRH
	Configuring ATD0
	Using ATD0

	Pulse-Width Modulation
	Generating Waveforms
	True Pulse-Width Modulation

	I2C Bus
	Basic I2C Communication Using the 9S12X
	LTC2633HZ12 I2C DAC – 16-bit Data Writes
	MPL3115A2:  Standard 8-bit Reads and Writes
	M41T81 Real-Time Clock – Standard 8-bit Reads and Writes
	Position Information with the LSM303DLHC – Standard 8-bit Reads and Writes
	3-Axis Accelerometer
	3-Axis Magnetometer and Temperature Sensor
	Device with 16-bit Internal Addresses (e.g. EEPROM) – Write and Read Functions
	I2C Reliability Measures

	Parting Words


