
CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

A pointer is a variable that holds the memory address of another variable, constant or
literal. They allow us to perform a call by reference in a way that variables outside the scope of
the function can be modified within such function. They are also useful for managing strings as

specific character within the array.

Declaring a Pointer Type

Declaration:

type * identifier; Where type can be any atomic (int, char, etc) or a custom type
previously defined using a typedef, and identifier is the name of the pointer variable.

We say that the actual type of the pointer is not type, but type *. For instance:

Int* pMyInt is a pointer to a variable of type int, therefore the type of such pointer is int*
and holds the address of an int variable.

Assigning a pointer

Once we have declared a pointer, we can then assign an address of a variable or constant /
literal to it. To do that, we use the address (&) operator. For instance:

Int MyInt;

Int* pMyInt = &MyInt;

Obtaining the Content of the Variable Pointed

Once we have declared and assigned a pointer, we can now reference the variable using
the pointer name with asterisk in front of it, in which case we can read such variable or assign a
new value to it. For instance:

Int MyInt;

Int* pMyInt = &MyInt;

*pMyInt = 5; // Assigns 5 to the variable being pointed by pMyInt, MyInt

Int sum = *pMyInt + 2 //Assigns 5+2 into sum

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Using Pointers to Structures

We can access the structure through the pointer, just like any variable, then we can
reference the structure member u

typedef struct MyStruct_

{

int Member1;

float Member2;

} MyStruct;

MyStruct record;

MyStruct * pMyStruct = &record;

*pMyStruct.Member1 = 5;

*pMyStruct.Member2 = 2.5;

 Since accessing structure elements via pointers is common and useful, an alternative and
easier to understand syntax is available:

pMyStruct->Member1 = 5;

pMyStruct->Member2 = 2.5;

Operations with pointers

Since a pointer variable holds an address, it therefore holds a number, which could be
incremented or decremented, meaning that incrementing such pointer would make it point to the
next address, or decrementing it, would make it point to the previous address; the addresses
would be incrementing or decrementing a number of bytes equal to the size of the variable that is
being pointed. For instance, a pointer to a char variable would increment /decrement by 1 byte,
while a pointer to an int (16 bytes) would make increments / decrements of 2 bytes.

 This type of operation can be extremely dangerous as we could make the pointer point
to a wrong address by mistake, so caution must be taken with using pointer arithmetic.

