
R1.2 DEC 2020 Page 1 of 17

Using C with the 9S12XDP512

Table of Contents
Introduction .. 2

Datatypes .. 2

Atomic Types ... 3

No bool? .. 3

Type Modifiers .. 3

The const Modifier .. 4

Numerical Notation - defaults and details ... 4

Working with bits .. 5

Unary (1s) complement, or bitwise NOT (~) ... 5

Bitwise AND & ... 6

Bitwise OR | .. 6

Bitwise XOR ^ .. 7

Left Shift << (Logical Shift Left for unsigned values) ... 7

Right Shift >> ... 7

The Mighty Derivative File .. 8

Functions ... 9

Decision-Making Statements & Looping ... 10

Interrupts and other Oddities ... 11

#define/#ifdef/#endif ... 12

static .. 12

User-Defined Types (enum & struct) .. 13

Creating Uncompiled Code Libraries .. 16

The Header File (.H) .. 16

The Implementation File (.C) .. 16

R1.2 DEC 2020 Page 2 of 17

Introduction
This document is designed to transition students from C# to C. For students that are familiar with
general C or C# programming, this document will also serve to point out items specific to the coding
environment of CodeWarrior. Some important notes:

• Having watched the video “Tool Chain Tips” on Moodle is a prerequisite to this document.
• Create a default project to follow along (using the template main.c provided on Moodle).
• As with C#, you will create a complete project per assignment. You will submit this project and

supporting libraries to Moodle as an archive when submitting your work. You will be given
specific instructions on how to do this at a time when it is more relevant.

• Your main program must never exit, so keep that in mind as you write your code. An endless
‘for’ loop has been provided in the template for this purpose.

• You should get used to placing code elements in the appropriate sections of the template file to
keep your code organized and tidy.

• All main.c files and library headers require documentation. More on this as we get into writing
code for a specific task.

• C code is much more restrictive than C#, and in this environment, you’ll need to get used to the
fact that there is very little library code to leverage – you are providing nearly all the code that
executes on the device. The separate compiling and linking stages, along with a single-pass
compiler make C an interesting experience.

While C is quite different from C#, there are many concepts that are transferrable.

Datatypes
This section lists the fundamental types of data used in C, as well as the modifiers that affect their
declaration and the way they are stored and accessed in memory.

Variables have three basic characteristics:

• location - the storage address for the variable
• size - the number of bytes of storage for the variable
• value - the actual state of the bits of the variable

The underlying type of the variable determines how the memory at the location is interpreted as the
value. This involves manipulating memory at its location over its size. Memory is just a vast array of
bytes; how that memory is interpreted is very important!

R1.2 DEC 2020 Page 3 of 17

Atomic Types
There are several atomic types in C (actual allocation size can vary on different platforms, but the actual
size can be obtained using the sizeof() operator):

• char - integral, often used to store ASCII codes, 8-bits (1 byte)
• int - integral, 16-bits (2 bytes)
• long - integral, 32-bits (4 bytes) [as a modifier]
• float - used to store single-precision floating point values (4 bytes)
• void - used to indicate things that have (or return) no value (no size, sizeof not defined)

Unlike in C#, numeric values in C implicitly convert to true or false when used in a relational expression.
All non-zero values evaluate to true, and only zero is false.

if (-41)
 printf("This is true!");

No bool?
After using a modern language like C#, it is also frustrating to discover the C does not contain the bool
type. This will make expressions and return arguments require a little more thought, but when coupled
with the rule above, we will settle into good patterns.

Type Modifiers
Most atomic types can be modified at the time of declaration with the type modifiers listed below:

• signed – Interpret type as being signed. Default for integer types like int and char.
• unsigned – Interpret type as positive only (no 2s complement interpretation).
• short – Halve the size of the variable type, where possible (but not here).
• long – Double the size of the variable type, where possible. Only used with int.

If no type specifier accompanies a modifier, int is assumed. This is why long, which is really long int, is
often mistaken for an atomic type:

long long int AsBigAsItGets = 1;

R1.2 DEC 2020 Page 4 of 17

The const Modifier
Another modifier that may be applied to a type at declaration is const. If an instance is declared const,
the compiler will prevent any attempt to modify the contents of that variable. Values that should not
change should be declared const. Because values declared as const cannot be changed, they must be
initialized at the time they are declared:

int const iWidth = 800; // Initial CDrawer width

With the exception of identity values, meaningful literal numeric values should be declared as const
values.

For reasons that will become clearer as we discuss pointers, you should always place the const modifier
after the type (which is the reverse of the usual practice with modifiers). In this way, the const applies to
‘the thing to the left’.

const int numA = 6; // seems reasonable, perhaps even intuitive
int const numB = 6; // actually preferred, because...
int const * const p = &numA; // this is where we are going... eventually...

Numerical Notation - defaults and details
• Integral values that begin with a 0 (zero) are interpreted as Octal (007)
• Values that begin with a leading 0x are interpreted as Hexadecimal (0xFE8D)
• Undecorated values are treated as decimal (base 10)
• Values that begin with 0b are interpreted as binary (0b11001110)
• Values with an appropriately positioned ‘E’ are in mantissa, exponent format (12.3E+11)
• Integral values default to int
• Postfix of a 'u' specifies an unsigned literal integer. (123u)
• Floating point values default to double, but this is same as float on our micro
• Postfix of an 'f' specifies a float literal (12.234f)
• A single character enclosed in single quotes (’a’) corresponds to an ASCII code value (still a

number).
• A series of characters enclosed in double quotes (“value”) corresponds to a string literal, which

is stored as a zero-terminated array of char. Also called “null-terminated string”.
• Prefix an 'L' to the front of a double quoted literal string to have the string interpreted as a

Unicode string literal (L"One Wide String"), but this is not supported on our platform.

Other types, like byte, may be provided by included libraries (including the derivative), but be careful
when relying on non-intrinsic types.

Variables may be declared in a new scope or globally in the variables section. Unlike in C#, variables in C
must be declared before any code in the local scope. This includes constructs like for loops as well.

R1.2 DEC 2020 Page 5 of 17

Working with bits
All of the addressable memory on a computing platform ultimately comes down to bits. An individual bit
may have one of only two states: 1 or 0. In terms of logic, this equates to true or false. Electrically, it
depends on the platform, but will normally be 0V for a logic 0 and > 0.7V for a logic 1 (typically 3.3V or
5V) when expressed in hardware. There are many terms used to describe the state of a bit, depending
on context:

Logic 1: set, 1, high, true, 5V, etc.

Logic 0: clear, 0, low, false, 0V, etc.

You may hear these terms used interchangeably (incorrectly at times), particularly across contexts.

The smallest datatype that you will use to manipulate bits is the unsigned char (sometimes as typedef
byte). An unsigned char consists of eight bits on this platform (our micro) but may vary in size on other
platforms.

Each bit in the unsigned char interpretation carries a 2n value, moving right to left:

Bit Name B7 B6 B5 B4 B3 B2 B1 B0
Value 27 26 25 24 23 22 21 20
Value10 12810 6410 3210 1610 810 410 210 110

Signed integral types are interpreted as 2s complement and will be covered later. For our purposes,
when performing bit manipulations, unsigned types will generally, if not always, be used.

Manipulating bits is essentially all that is happening when code is running. Bit manipulations are
especially important when working with our micro, as the behaviors of many of the modules are
managed through individual bits.

Bitwise operators operate exclusively on integral types and may perform automatic promotion to larger
types to hold the result of an operation. Understanding the sizes of operands in bits is critical to making
these expressions produce useful values.

You will need to learn techniques (and the associated operators) for manipulating the states of bits in
integral types.

Unary (1s) complement, or bitwise NOT (~)
This operator returns the 1s complement of the operand. The operand is not changed, so the result will
need to go somewhere. The result has every bit flipped, inverted, or toggled, as you may hear. A 0
becomes a 1, and a 1 becomes a 0:

unsigned short uiX = 0xA070; // 1010 0000 0111 0000

uiX = ~uiX; // 0101 1111 1000 1111 //uiX is unchanged unless back-assigned

R1.2 DEC 2020 Page 6 of 17

Bitwise AND &
The result of the operation is a bit-by-bit AND. When mixing different length arguments, the smaller is
promoted and zero padded to match the larger operand (unsigned). Neither operand is modified.

unsigned short uiX = 0xA070; // 1010 0000 0111 0000

unsigned short uiY = 0x559E; // 0101 0101 1001 1110

// & --------------------

unsigned short uiZ = uiX & uiY; // 0000 0000 0001 0000 //= 0x0010

The bitwise AND operation is often used to determine the set state of single or multiple bits in an
operand by setting an operand to a specific bit pattern known as a mask.

Set bits in the result indicate a ‘on’ bit that corresponds to a bit in the mask. For single bit masks, the
return value may be evaluated directly as true/false. This is also true for multi-bit masks, but 0 or more
bits may be on in the result.

unsigned short uiX = 0xA070; // 1010 0000 0111 0000

unsigned short mask = 0x0020; // 0000 0000 0010 0000 // is bit 5 (6th bit) on in uiX?

// & --------------------

unsigned short uiZ = uiX & mask; // 0000 0000 0010 0000 // True ! bit is on !

AND is also used to clear bits (set them to 0). Once again, a mask is used as a pattern for bits to clear,
and may be inverted before the AND operation. This looks complex, but is an easy way to self-document
the bits you are clearing:

unsigned short uiX = 0xA070; // 1010 0000 0111 0000

unsigned short mask = 0xF00F; // 1111 0000 0000 1111 // force off upper/lower nibbles

// 1s 0000 1111 1111 0000 // use 1s complement in and expression

// | --------------------

unsigned short uiZ = uiX & ~mask; // 0000 0000 0111 0000 // mask bits are set ON, other bits as they were

Bitwise OR |
The result of the operation is a bit-by-bit OR. Promotion and padding works the same as AND. Neither
operand is modified.

unsigned short uiX = 0xA070; // 1010 0000 0111 0000

unsigned short uiY = 0x5FF5; // 0101 1111 1111 0101

// | --------------------

unsigned short uiZ = uiX | uiY; // 1111 1111 1111 0101 // 0xFFF5

R1.2 DEC 2020 Page 7 of 17

Bitwise OR is often used to set single or multiple bits in an operand. Once again, a mask is used as one of
the operands, and is the pattern of bits that should be set.

unsigned short uiX = 0xA070; // 1010 0000 0111 0000

unsigned short mask = 0x0A00; // 0000 1010 0000 0000 // make sure these bits are ON (set)

// | --------------------

unsigned short uiZ = uiX | mask; // 1010 1010 0111 0000 // mask bits are set ON, other bits as they were

Bitwise XOR ^
The result of the operation is bit-by-bit XOR (exclusive OR). Promotion and padding follow the same
rules as above. Neither operand is modified. This is a useful operation when toggling bits in a mask
pattern is desired.

unsigned short uiX = 0xA070; // 1010 0000 0111 1010

unsigned short mask = 0x0FF0; // 0000 1111 1111 0000 toggle middle nibbles

// ^ --------------------

unsigned short uiZ = uiX ^ mask; // 1010 1111 1000 1010 0xAF8A

Left Shift << (Logical Shift Left for unsigned values)
This operator will shift the bits in the left-hand argument the number of positions indicated in the right-
hand argument. Zeroes are inserted at the LSB position. Bits shifted out the MSB position are lost.

Shifting left results in a value that is twice (2x) the left-hand operand value for each bit shifted.

unsigned short uiX = 0xA071; // 1010 0000 0111 0001

unsigned short uiY = uiX << 5; // 0000 1110 0010 0000 // 5 zeros << in, bits lost

Right Shift >>
This operator functions much the same as left-shift, but bits are shifted right. The behavior of this
operator is dependent on the sign of the presented type. For unsigned types it is zero in at MSB and LSB
is lost. For signed types, the sign bit is preserved. Most operations in CMPE1250 would use unsigned
types for this operator.

unsigned short uiX = 0xA070; // 1010 0000 0111 0000

unsigned short uiY = uiX >> 5; // 0000 0101 0000 0111 // 5 zeros >> in, bits lost

short uiX = 0xA070; // 1010 0000 0111 0000 // signed value, negative MSB ON

short uiY = uiX >> 5; // 1111 1101 0000 0111 // 5 ONES >> in, bits lost

Note the signed version, depending on the sign bit (MSB), will shift in ONES to maintain sign, and leave
the number in the negative domain (-12810 0b10000000 would become -6410 0b11000000)!

R1.2 DEC 2020 Page 8 of 17

Finally, compound versions of all binary operators are supported: &=, |=, ^=, <<=, and >>=

unsigned char a = 0xFF;

a &= 0x10; // same as a = a & 0x10;

a |= 0x10; // same as a = a | 0x10;

a ^= 0x10; // same as a = a ^ 0x10;

a <<= 1; // same as a = a << 1;

a >>= 1; // same as a = a >> 1;

Use these compound equivalents as you would the arithmetic versions for clarity and brevity.

You must now go and become an expert in:

• Knowing the size and types of your operands.
• Converting binary to HEX and back.
• Writing expressions that represent operand literals in the most informative base.
• Writing expressions to selectively turn on, turn off, and toggle specified bits in an operand,

without affecting the other bits.
• Writing expressions to determine if specific patterns of bits are found in an operand.
• Selecting suitable types and modifiers for variables in your code.
• Writing expressions to control the flow of your code based on any set of variable states.

The Mighty Derivative File
The project will include derivative support files that contain definitions for port pins and other useful
addresses. You may use these definitions in you code to manipulate ports and operate 9S12 modules:

Your instructor may discuss some of the details of this file with you now, and certainly will when we
start operating modules on the micro. The document “Big Pink” has strong ties to the derivative file, so
we can leverage this benefit when writing code.

R1.2 DEC 2020 Page 9 of 17

Functions
Anything you do that could be used repeatedly either in this project or others should be placed in a
function.

C supports functions just like C#, with a few minor things of note:

• Unlike C#, methods that take no arguments must explicitly be marked void.
• Functions in C must be prototyped. This means the compiler must see a function prototype or

definition prior to its use. There are two ways to accomplish this – put the function definition
above main (you will generally not be permitted to do this), or prototype the function with a
function declaration. You will do the latter, and all it requires is that you place a copy of the
function signature above main (in the correct comment section) with a semicolon after it. Later,
you will see how to make libraries, and this mechanism will change slightly.

// a function prototype

void foo (void);

void main(void)

{

 // call to function

 foo ();

}

// function definition

void foo (void)

{

}

R1.2 DEC 2020 Page 10 of 17

Decision-Making Statements & Looping
Much of what you have learned in C# with respect to decision-making statements, looping, and other
constructs is directly applicable to C. The only caveat here is you can’t declare variables after code, and
the implicit conversion of an expression to true/false can impact how you write these constructs.

As a discussion with your instructor, consider the behavior of the following blocks of code:
(what do they mean / how would you comment the code?)

{
 int i;
 for (i = 0; i < 10; ++i)
 {
 }
}

{
 int i = 10;
 while (--i)
 {
 }
}

{
 if (!i || i%2)
 {
 }
}

{
 int i = 10;
 while (i >>= 1)
 {
 }
}

Note: Variables can’t be declared after code, but you can always open a new scope wherever you like!

R1.2 DEC 2020 Page 11 of 17

Interrupts and other Oddities
The C implemented in CodeWarrior is pretty much hard-core ANSI compliant C, but it does deviate a
little in some areas to make things a little easier to work with. For example, interrupts can be handled
quite easily:

To build an interrupt service routine, simply mark the handling method with interrupt. Next place the
interrupt number. For this you may simply count the interrupt priority from the top and use the offset,
or select the interrupt by definition from the derivative file:

The rest of the handler will be a void/void signature with whatever name you want to call it. This
mechanism will work for all 9S12 interrupts.

All standard interrupt handling methodologies still apply – this simply provides the handling function.

You will occasionally see other items in Visual Studio Code that report as errors. Some things are specific
to the CodeWarrior environment, and will appear as errors. Don’t panic, unless CodeWarrior reports it
as a warning or error.

All code should be free of warnings and errors when handed in.

R1.2 DEC 2020 Page 12 of 17

#define/#ifdef/#endif
Commenting in/out code in C is tiresome, as it needs to be done as individual lines, or as blocks (which
don’t properly nest).

If you have code that you wish to ‘turn on’ and ‘turn off’ at compile time, it is recommended that you
achieve this with preprocessor directives.

A symbol that is created with a #define may be presence tested with an #ifdef. If true, the block is
included until an #endif is encountered. You may then comment in/out only the #define to control the
presence of entire sections of code:

#define use_this_block
#ifdef use_this_block

// this code is now switched on and off at compile time
// by the presence or absence of the #define

#endif

//#define use_this_block
#ifdef use_this_block

// this code is now switched on and off at compile time
// by the presence or absence of the #define

#endif

Note: #define makes definitions visible only to the compilation unit.

static
In C, you may use the static modifier on a variable. This has nothing even remotely to do with what
static means in C#. In C, the storage of the variable is moved from the stack to global space. What does
this mean? A static modified variable will maintain its value between calls to the function that contains
it. This is a seriously powerful tool for some of the code you will write, and it will be discussed in the
future, closer to when it matters.

R1.2 DEC 2020 Page 13 of 17

User-Defined Types (enum & struct)
The C language supports enumerations and structures just as C# does, with subtle differences.

In C, an enumeration is a new, named type that defines a set of named constant values known as
enumerators. Instances of the enumeration may only contain one of the enumerators, thus restricting
the set of assignable values.

// unnamed + instance (single use)
enum { orange, grape, cherry } PopType;

//// named + instance (multi use)
enum Temps { Hot, Warm, Cold } sensorA;
enum Temps myTemp = Warm; // note: requires enum keyword to declare

//// not named + no instance (defines enumerators)
enum { Rock, Cotton };

Because the constant enumerators are regular identifiers, the code that uses enumerations is inherently
easier to read:

enum eMachineStates { Running, Stopped, Broken };

void foo(enum eMachineStates state) // note: requires enum keyword to declare
{
 if (state == Broken)
 CallRepair();
}

Unlike C#, it is not necessary to ‘dot’ an enumerator from the type – the enumerators are constants
declared in the scope of their creation.

You may suppress the need to repeat the enum keyword in declarations if you typedef the enum to a new
name (shown below). Note: some purists are vehemently against typedefing enums and structs.

Enumerators are automatically assigned increasing values, starting at 0. You may override the values for
selected enumerators during declaration:

typedef enum { Running, Stopped = 50, Broken } eMachineStates;

void foo(eMachineStates state)
{
 printf("\n%d", Running); // 0
 printf("\n%d", Stopped); // 50
 printf("\n%d", Broken); // 51

 if (state == Broken)
 CallRepair();
}

You may also alter the backing type of the enum, but this is beyond the scope of CMPE1700.

R1.2 DEC 2020 Page 14 of 17

C also supports aggregate user-defined types with struct.

A struct definition creates a new type that contains a sequence of members allocated in a block. Each
member may be any type known to the compiler at the time of declaration, including pointers to the
struct being defined. The purpose of the struct is to group like data into a single entity (a record).

The reported size of a struct will always be at least the sum of the sizes of its members, and may be
more to accommodate alignment considerations.

Unlike enumerations, structures may be forward declared (could appear in a header):

struct SomeStruct;

The struct definition contains types and names for the members of the structure, in order of their
memory footprint:

struct SomeStruct
{
 short i;
 float f;
 struct SomeStruct * p; // note struct keyword required!
};

2 bytes 4 bytes 4 bytes 2 bytes
i f p Padding

You might expect that the size of this type is 10 bytes, but with int alignment, it will be reported at size
12, and aligned at a 4 byte boundary in memory. Complier options may alter this.

Instances of a struct are declared with the struct keyword and a tag name for a defined struct:

struct SomeStruct myStruct;

Like with enum, the extra struct keyword may be omitted if the struct is typedefed:

typedef struct
{
 short i;
 float f;
 struct SomeStruct * p; // note struct keyword still required here!
} SomeStruct;

SomeStruct myStruct; // contents unknown!

A structure instance may be initialized with chicken lips:

SomeStruct myStruct = { 5, 2.6f, NULL }; // struct with initialization

R1.2 DEC 2020 Page 15 of 17

Members of a struct are accessed with the direct member operator ‘.’

// members are accessed with the direct member operator '.'
printf("%d", myStruct.i);

You are used to this from C#, where everything you operate is a class or struct and always has
members.

Structures may be passed to functions like any other type. The address of a struct yields a pointer to
struct:

void foo(SomeStruct * pStruct)
{
 (*pStruct).i += 5; // must dereference pointer to get direct member operator
}

void main(void)
{
 SomeStruct myStruct = { 5, 2.6f, NULL }; // struct with initialization

 foo(&myStruct);
}

C offers a special operator to access members of a struct via a pointer: the indirect member operator:
‘->’

void foo(SomeStruct * pStruct)
{
 pStruct->i += 5; // indirect member operator (does the dereference for you)
}

If a struct contains an array, treat the member like what it is after the indirect member operator –
nothing strange here…

void foo(SomeStruct * pStruct)
{
 printf ("%d", pStruct->stuff[5]);
}

Initialization with arrays will require an enclosing set of chicken lips:

typedef struct
{
 double d;
 int stuff[10];
 char q;
} SomeStruct;

SomeStruct temp = { 3.14, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } , 'Q' };

R1.2 DEC 2020 Page 16 of 17

Creating Uncompiled Code Libraries
To gain the benefits of modularity and reusability, it will make sense to create compilation units for
related code. For example, the indicator LED and switch code should be placed in a separate compilation
unit so:

• You don’t need to have it in your main program
• You can use it in subsequent programs
• You will only have one copy to maintain across all usage instances

Creating a compilation unit requires that you create two extra text files. You will create a header file that
contain function declarations (prototypes), and a code file (implementation) that contains the function
definitions. There are templates for these files on Moodle.

The Header File (.H)
The contents of the header file should not contain code implementations, but only prototypes and
declarations necessary to operate the library.

The header will also include all documentation necessary to operate the library. In production code,
headers are freely distributed, and implementations are pre-compiled. This means the user will not get
to see the implementation, so the header is all they have as documentation.

The Implementation File (.C)
The implementation file will include an include directive for the header and include directives for any
other referenced compilation units – typically the derivative, but may include other units you have
made. It will also include, of course, the matching function implementations for the prototypes in the
header.

Implementation files include their header, and any other headers absolutely necessary for the code to
compile. No more, no less.

It is recommended that you place these two files in a separate folder at the root of your projects folder,
this way all of your projects can refer to the files. You should not keep separate library files in a
particular project, copying them forward to new projects. Your instructor will discuss this with you, and
there is a video on Moodle discussing the topic.

R1.2 DEC 2020 Page 17 of 17

To use a library, you simply add the implementation file to the project ‘Sources’ folder:

Browse to your library folder and add the implementation (.c) file to the project.

In your main.c file, include an include directive for the header (.h) file:

The ‘include’ directive will essentially copy and paste the code from the header into the position of the
include directive, meaning you now have the function prototypes that you need in the main file. By
adding the implementation file to the project, you’ve identified another code source that needs to be
compiled and linked to your final output. This is all managed by the IDE, so as long as you follow these
steps, you should be OK.

	Introduction
	Datatypes
	Atomic Types
	No bool?
	Type Modifiers
	The const Modifier
	Numerical Notation - defaults and details

	Working with bits
	Unary (1s) complement, or bitwise NOT (~)
	Bitwise AND &
	Bitwise OR |
	Bitwise XOR ^
	Left Shift << (Logical Shift Left for unsigned values)
	Right Shift >>

	The Mighty Derivative File
	Functions
	Decision-Making Statements & Looping
	Interrupts and other Oddities
	#define/#ifdef/#endif
	static
	User-Defined Types (enum & struct)
	Creating Uncompiled Code Libraries
	The Header File (.H)
	The Implementation File (.C)

