
BIT MANIPULATION: BITWISE OPERATIONS
C can perform six different bitwise operations: OR, AND, XOR, NOT, left shift, and right

shift. As the names seem to imply, these operations are very similar to their logical

counterparts, but there are crucial differences. If an operation is , then it

applies to each individual bit in the bitstring. If an operation is , then it applies

to the bitstring as a whole.

The bitwise OR operator is represented as in C. As we know, an OR gate outputs 1 if

and only if at least one of its inputs is 1. From the properties of Boolean algebra, we

know that 1 OR X = 1, and 0 OR X = X. Since this is the case, we can say that ORing any

bit with 1 sets it to 1, whereas ORing any bit with 0 does not change the bit. As such,

you may see the OR operation referred to as a operation. To demonstrate, if we

had the bitstrings 11000010 and 01101011, and bitwise OR’d them, the result would

be = 11101011. Notice that Bits 0, 3, and 5 of the first

bitstring went from 0 to 1, since the respective bits in the second bitstring were also 1.

Going back to the eight LEDs example, we had the bitstring 00101101, and we wanted

to turn LED #1 on. In order to do that, we could bitwise OR that bitstring with

00000010, resulting in = 00101111. Notice that the only Bit 1

was changed from the original bitstring; everything else remained unchanged.

https://sites.google.com/vt.edu/introduction-to-embeddedsystem/programming/bit-manipulation/introduction-bit-manipulation?authuser=0
https://sites.google.com/vt.edu/introduction-to-embeddedsystem/programming/bit-manipulation/introduction-bit-manipulation?authuser=0
https://sites.google.com/vt.edu/introduction-to-embeddedsystem/programming/bit-manipulation/introduction-bit-manipulation?authuser=0

The bitwise AND operator is represented as in C. As previously known, an AND gate

outputs 1 if and only if both of its inputs are 1. The properties of Boolean algebra also

state that 0 AND X = 0 and 1 AND X = X. This presents opposite behavior as the OR

operation. ANDing any bit with 0 clears it to 0, whereas ANDing any bit with 1 leaves it

unaffected. Thus, the AND operation can also be called a or operation. To

put it into focus, let’s take the same example as before, but with a bitwise AND

instead. So, = 01000010. Notice that Bit 7 of the first bitstring

went from 1 to 0, since Bit 7 of the second bitstring was also 0. Following up from the

eight LEDs example, we turned on LED #1, but now we want to turn off LED #3. Given

that our bitstring is 00101111, we could bitwise AND that with 11110111, resulting in

 = 00100111. Notice that only Bit 3 was changed from the

original bitstring; everything else remained unchanged.

The bitwise XOR operator is represented as in C. From prior knowledge, we know

that a two-input XOR gate outputs 1 if and only if one of its inputs is 1, but not both.

Given this nature, we can derive that 1 XOR X = NOT X and 0 XOR X = X. We now have

more curious behavior than the previous operations. XORing any bit with 1 returns

the complement of that bit, and XORing any bit with 0 leaves the bit unchanged. In

other words, the XOR operation is a operation. With the same example as with

the previous operations, applying a bitwise XOR operation to 11000010 and 01101011

leads to = 10101001. Notice that Bits 0, 1, 3, 5, and 6 of the

original bitstring have the opposite values now, since the respective bits of the second

bitstring were 1. Returning to the eight LEDs example, suppose we wanted to

arbitrarily toggle the state of LED #4. Now, from our bitstring 00100111, we know that

LED #4 is off, so toggling its state would be the same as setting Bit 4 to 1. The

usefulness in the toggle operation comes in the case where we either don’t know or

don’t care about the current state of LED #4, we just want the opposite of it. So, in

order to accomplish the task of toggling LED #4, we could bitwise XOR that bitstring

with 00010000. Thus, = 00110111. Notice that only Bit 4 was

changed from the original bitstring; everything else remained unchanged.

The bitwise NOT operation is represented as in C. Simply put, a NOT gate outputs

the complement of its input. So applying a NOT operation to a bit simply flips it. Thus,

a bitwise NOT operation just flips each bit in a bitstring. Unlike the previous

operations, the NOT operation only needs one operand (as opposed to two). For

example, taking 11000010 and applying a bitwise NOT operation returns

= 00111101. Notice that every bit in the original bitstring is now the opposite of its

original value. You may notice a similarity with the bitwise XOR operation in that the

NOT operation toggles each bit. Indeed, bitwise NOT is the same as bitwise XOR with

a bitstring of all 1’s (e.g., is the same as). The

important difference is that bitwise XOR is useful for toggling specific bits, whereas

bitwise NOT is useful for toggling every bit. So, for the eight LEDs example, given

00110111, if you want to toggle the state of every LED, you could apply a bitwise NOT

to that bitstring, resulting in = 11001000. So, LEDs #0, #1, #2, #4, and #5

are all turned off, while LEDs #3, #6, and #7 are all on.

Finally, the shift operations are represented in C as and for left shift and right

shift, respectively. As a note, these shifts are logical shifts, thus a shifted bit is

replaced with a 0 (as opposed to arithmetic shifts, where right shifts copies the signed

bit). Even though the operation itself only requires one operand, in C, the operations

take two operands: the bitstring to be shifted, and how many times it should be

shifted. For example, = 11111110. This is a left shift performed on

11111111 only once. As opposed to = 11111000, which is a left shift

on the same number done three times. This is the same for the right shift operation,

where = 01111111 and = 00001111. These shift

operations aren’t as applicable to the eight LEDs example; however, they are very

useful for creating bitmasks.

BIT MANIPULATION: AFFECTING A SINGLE BIT
A is a bitstring that can be used in bitwise operations to only affect certain bits. We have

already seen examples of a bitmask with the eight LEDs problem. When we wanted to turn LED #1

without affecting the other LEDs, we bitwise OR’d the LED bitstring with the bitmask 00000010.

What if we wanted to toggle LED #1 without affecting the other LEDs? We would bitwise XOR the

LED bitstring with that same bitmask, 00000010. This bitmask corresponds to Bit 1, which in turn

corresponds to LED #1. Similarly, 00010000 is a bitmask for Bit 4, which corresponds to LED #4. In

each bitmask, all the bits are 0 except for the corresponding bit. In other words, a bitmask can

“mask” the other bits so that they are not affected by whatever operation you perform on the

desired bit.

Now, what if you wanted to turn off LED #1? Bitwise ANDing the LED bitstring with the bitmask for

LED #1 would not work; it would just turn all the other LEDs off while leaving LED #1 unaffected.

Instead, we could bitwise AND it with the complement of the LED #1 bitmask. We can get the

complement of the bitmask by doing a bitwise NOT operation. Thus, = 11111101. If

we bitwise AND this with the LED bitstring, only LED #1 is turned off while the others stay the

same.

So now we know how to use bitmasks to manipulate the value of each bit. What if we wanted to

get the value of a specific bit? As humans, we can easily glance at a bitstring and know what the

value of, say, Bit 2 is. For a computer, “looking” at a specific bit equates to its value. In

order to read a specific bit’s value, we turn to bitmasks once again, this time using the bitwise

AND operation to isolate the bit. This makes all other bits 0 while retaining the value of the bit you

want. Let us say that the state of the LEDs is stored in variable a and you need to see if LED #2 is

on or off, then the following expression isolates bit 2 of the LED status. If the expression becomes

zero, it means LED #2 is off and if the expression become non-zero, it means LED #2 is on. Note

that since we are not writing back this value to a, it does not affect a and therefore the lights are

unchanged.

The below table summarizes the bitwise operations with masks. Note that in all operations except

when clearing a bit, the mask is used directly. However, when we need to clear a certain bit, we

need to use the complement of the mask for that bit and AND it with the original bitstring.

BIT MANIPULATION: CREATING BITMASKS
Creating a bitmask for a specific bit is as simple as starting with a bitstring of 0’s and

flipping the desired bit. So for a bitmask for Bit 0, it is as simple as starting with

00000000 (for an 8-bit bitmask), then flipping the 0th bit, resulting in 00000001.

Although this starts off as simple for shorter bitstrings, it’s easy to make mistakes

when working with larger bitstrings. For instance, it may be difficult to create a

bitmask for Bit 22 of a 32-bit bitstring using this method without possibly making

errors.

There is, however, a simpler method. Notice that the bitmask for Bit 1 is 00000010,

which is equivalent to the decimal number 2, which is also 2^1. Similarly, the bitmask

for Bit 2 is 00000100 = 4 = 2^2. The bitmask for Bit 3 is 00001000 = 8 = 2^3, and the

pattern continues. Notice that the bitmask for a Bit n is the binary equivalent to 2^n.

Recall that if you have an unsigned binary number and you logical shift it to the left, it

is the same as multiplying that binary number by 2. If you logical shift it to the left

twice, it is the same as multiplying by 4, or 2^2. Similarly, the logical shift to the left

three times is the same as multiplying by 8, or 2^3. Notice that doing a logical shift left

n times is the same as multiplying that number by 2^n. Thus, we can use the left shift

operation in order to create bitmasks. Let’s start with making a bitmask for Bit 0. The

bitmask is 00000001 = 1 = 2^0 = . To get the bitmask for Bit 1, which is 2, we

need to multiply 1 by 2. In other words, gives the bitmask for Bit 1. To get the

bitmask for Bit 22, which is 2^22, we need to multiply 1 by 2^22, or . In

summary, creating bitmask in C for a Bit n is as simple as .

In the driverlib provided for MSP432, single-bit masks are defined as macros that you

can readily use. See the below image. BIT0 is the macro that all the bits are 0 except

at bit index 0. The first 16 bitmasks are defined as BIT* where * is the hex digit

representing the index of the single bit that is 1 in the bitmask. For indices larger than

15, you need to use BIT(x) format where x is the index. For example, BIT(25) is the

bitmask that all bits are 0 except for index 25.

You can also create bitmasks that control multiple bits. Using the eight LEDs example

once more, say the bitstring is 10100110, and you wanted to turn on LED #3 and #4.

While you could turn them on one at a time, a more efficient approach would be to

turn them on simultaneously. In other words, we can bitwise OR the LED bitstring

with 00011000, leading to = 10111110. Notice that 00011000

is a combination of the bitmasks for Bits 3 and 4. In other words, 00011000 =

. So, in order to combine bitmasks, use a bitwise OR

operation. Let’s say you wanted to turn off LED #2 and #7. Combining the bitmasks

for those LEDs gives you = 10000100. Bitwise ANDing the

LED bitstring with the complement of this combined bitmask gives you

 = = 00111010.

In many cases, we are interested to create a bitmask for several adjacent bits. For

example, let us say we are interested to LED #3, #4, #5, and #6. There are 4 '1's in this

mask that start from position Bit 3 and go up. This is similar to having the binary

number and shifting it 3 times, which gives us This means we

can create a mask by putting as many '1's as the mask needs at the left-most side of

the bitstring and then shifting it as many times as the lowest bit position of the mask.

