
CMPE1250
Winter 2025
v1.0

ICA 3
Bitwise Operations

1 Introduction

Bitwise operations are uncommon in your PC programming courses, but they are a fundamental skill
in embedded programming. In the embedded world, computing resources are very valuable, so you
often use a single bit to store a binary value rather than a whole byte. Your code is also interacting
directly with hardware, so you will often need to read or manipulate a single bit within a register.
You will also need to shift data left and right for a variety of reasons. In embedded programming, we
operate on the level of bits and registers. We do this with bitwise operations, which you will explore
in this assignment.

2 Outcomes

By the end of this assignment, you should be able to:

� Create a new Code Warrior project

� Clear, set, and toggle specific bits with bitwise operations

� Explain the difference between bitwise and logical operators

� Shift values within a register

� Mask bits to check the value of individual register bits

� Manipulate single bits in PT1AD1 with bitwise operations

� Set a breakpoint in CodeWarrior

3 Assignment

In this assignment you will have to perform several very common bitwise operations. To avoid making
this a strictly theoretical exercise, you will be writing some code for your microcontroller board that
will turn the LEDs on and off. However, you likely haven’t learned about the General-Purpose Input-
Outputs (GPIO) that are used to make this happen. For that reason, some code has been provided for
you. For now, focus on understanding the bitwise operations. All of the bits you need to manipulate
are in the PT1AD1 register. This register can be accessed through the similarly named variable that
has been declared in the derivative.h file. The PT1AD1 Register Diagram below should help you
determine exactly which bits you need to read from or write to. Don’t worry about why modifying
certain bits will turn LEDs on and off. That will be your next topic in class.

Buttons

Pin
Function

7 6 5 4 3 2 1 0

LEDs

82 80 78 76 74 72 70 68

R Y G ⇑ ⇐ ⇓ ⇒ ⊗

Figure 1: PT1AD1 Register Diagram



CMPE1250 ICA 3 - Bitwise Operations

3.1 Create a new project

You should have a general understanding of how to set up a new project for an ICA at this point of the
course. You should create a new branch of your git repository before creating the project. If you don’t
remember the git commands, there are several resources listed on Brightspace. As you are setting up
your project, verify that these CodeWarrior Project Settings are correct.

Make the initial commit on your new branch once your project is configured and the provided
starter code has been pasted into it.

Listing 1: CodeWarrior Project Settings

Processor = HCS12X - MC9S12XDP512

Connections = USBDM

Memory Model = Small

Floating Point = float is IEEE32 , double is IEEE32

3.2 Initialize Port AD1

You haven’t learned about configuring GPIO yet, but the starter code provided by your instructor
contains the following Port AD1 initialization code. You will learn more about these lines in a later
lecture, but they are configuring the pins connected to the LEDs as outputs and the pins connected
to the buttons as inputs.

Listing 2: Port AD1 initialization

PT1AD1 &= 0b00011111; //Turn off LEDs before enabling outputs

DDR01AD1 = 0b11100000; //Set LED pins to be outputs

ATD1DIEN = 0b00011111; // Disable A-to-D button pins (22.3.2.69)

3.2.1 Part 2 Questions

The first line in the code above is PT1AD1 &= 0b00011111. How is this different than PT1AD1 =

0b00011111 or PT1AD1 = 0b00000000?

3.3 Turn on two LEDs

If you refer to the PT1AD1 Register Diagram, you can see that bits 7 and 5 control the red and green
LEDs. Add a line of code that will set those bits high without affecting the other bits of PT1AD1 to
the One-time initializations section. The red and green LEDs should illuminate when you run
this code.

3.3.1 Part 3 Questions

How often will this line of code run?

3.4 Toggle one LED

All of your code should now be added to the main loop of your code. Add a line of code that will toggle
bit 6 of PT1AD1 on evert iteration of the main loop without changing any other bits in the register. It
should look like the yellow LED is illuminated when you run the code, but it will be less bright than
the other two LEDs. Set a breakpoint on this line of code so you can see what is happening when it
runs.

v1.0 2 of 4



CMPE1250 ICA 3 - Bitwise Operations

3.4.1 Part 4 Questions

How often does your new line of code run?
What operation does ^ perform?
Explain how ^ is making the LED toggle on an off.

3.5 Turn off one LED

Add another line that will clear bit 7 of PT1AD1 without changing any other bits. The red LED should
turn off when this line of code runs. If you let the main loop continue running, the yellow LED should
still be toggling and the green LED should still be illuminated.

3.5.1 Part 5 Questions

Explain how the ~ operator is different from the ! operator.

3.6 Bitmasking

If you refer to the PT1AD1 Register Diagram again, you will see that bits 0 - 4 are related to the
buttons on your board. The LSB (least significant bit) shows the state of the middle button. To know
if the button is being pressed, we need to be able to read the value of just that bit. Make a new
unsigned char variable and assign it the value of PT1AD1 bit 0 using bitwise operations. Make sure
this variable is getting updated on every iteration of the main loop.

Your new variable will be true if the center button is being pressed. Add an if() statement that
will turn on the red LED if the button is being pressed. This should not change the state of the other
two LEDs.

3.6.1 Part 6 Questions

Why do you need to isolate a single bit to check if a button is being pressed?

3.7 Bit shifting

Make sure you have made a git commit at this point. You can now reset your code to be the original
starter code that was provided to you by your instructor. Simply copying and pasting the C file will
be the simplest way to do this. You could use git revert, but you would need to close Code Warrior
first.

Add the following Non-Blocking Delay code to the start of your main loop.

Listing 3: Non-Blocking Delay

static unsigned long delay = 0;

static unsigned char counter = 0;

if (++ delay == 100000){ //When delay has incremented 100000 times

counter ++; // Increment counter

delay = 0; // Reset delay timer

}

This will be covered in your next ICA, but it creates a short delay so that counter isn’t constantly
getting incremented. You now have a counter variable that will slowly be incremented as your code is
running. We could use the LEDs to display the value in binary, but PT1AD1 = counter; would display
the most significant bits (MSBs) of the counter variable on the LEDs. We want to see the LSBs on
the LEDs. Use bit shifting operations to correctly display the counter value on the LEDs; make the
three LSBs of the counter align with the three MSBs of PT1AD1.

v1.0 3 of 4



CMPE1250 ICA 3 - Bitwise Operations

3.7.1 Part 7 Questions

Why do you need to shift the counter values? What happens if you assign the counter to PT1AD1
without bit shifting? What happens to the LED display when the counter is greater than 7?

4 Conclusion

In this assignment you have seen several practical examples of bitwise operations. You will get plenty
of practice with them throughout CMPE1250 because they are extremely common operations in em-
bedded programming. Equally, many simple tasks will be very difficult until you have a strong under-
standing of these operations.

v1.0 4 of 4


	Introduction
	Outcomes
	Assignment
	Create a new project
	Initialize Port AD1
	Part 2 Questions

	Turn on two LEDs
	Part 3 Questions

	Toggle one LED
	Part 4 Questions

	Turn off one LED
	Part 5 Questions

	Bitmasking
	Part 6 Questions

	Bit shifting
	Part 7 Questions


	Conclusion

