
R1.2 Page 1 of 3

CMPE1250 – LED and Switch Library

It is time to start building up a library to house the useful and reusable code you are creating for the

LEDs. You will additionally begin to operate the switches in this assignment as well.

Any code you write that may be reused in a subsequent activity should be placed in a library. This

ensures that only one copy of the code exists, and simple reuse is possible.

Before you begin this exercise, make sure you attend the lecture on creating compilation units and/or

watch the supporting video on Moodle. Templates for the necessary files are available on Moodle.

You have already seen that your indicator LEDs may be turned on or off by setting or clearing the

corresponding bits in PT1AD1. Recall from the previous notes that the switches occupy the bottom five

bits of PT1AD1 and are configured by the port initialization code to be inputs:

To turn on a LED, you set the bit that corresponds to that LED in PT1AD1.

To read a switch, you read the bit that corresponds to that switch in PT1AD1.

For example, if you want to know if the down switch is currently being pushed, you would check bit two

in PT1AD1 to see if it is a 1. If so, the switch is currently being pushed, if not, it is not:

// assume port already initialized
if (PT1AD1 & 0b00000100)
{
 // down switch is being pushed
}

Using a suitable mask and the bitwise AND operator, you may check for any individual, or combination of

switch states. Keep in mind that the state of the switch is instantaneously checked at that line of code,

and only reflects the state of the switch at that moment in time.

A sample header for your switch/LED library may be found on Moodle. You may model your own library

after this one or go your own way. Throughout the rest of the course, the notes, demos, and other

course materials will use the names found in the sample library.

Your instructor will discuss the contents of this header and will explain the usefulness of enumerations

when used to self-document code, and facilitate operator choices.

You will need to complete your implementation file to provide the actual behaviors of these functions.

This is not provided, but a generic template is available on Moodle.

R1.2 Page 2 of 3

To complete this assignment, you will need to have a fully formed and documented compilation unit

(library) for the switches and LEDs, and suitable test code to ensure that all functions are exercised, with

all pattern of arguments. This is important, as the check-off code may not be comprehensive in this

regard.

Application Notes:

Because you are always reading from the port to detect button states, you will invariably use the bitwise

AND operation for this task, as shown above. Any button that is pressed will return a 1 in the

corresponding mask position, if found in the mask. A 1, regardless of position, will be considered true in

an expression that tests for true or false in C.

Turning a LED on requires that you set the corresponding bit in the port register. This will typically be

done with a bitwise OR operation:

// turn RED red LED on
PT1AD1 |= 0b10000000;

To turn off a LED, the corresponding bit in the port register must be cleared. This will typically be done

with a bitwise AND operation:

// turn RED red LED off
PT1AD1 &= 0b01111111;

// or, easier to read?
PT1AD1 &= ~0b10000000;

Toggling a LED is typically achieved with the bitwise XOR operator. This is a neat trick, as conceptually

the LEDs are write-only devices. The port is buffered, so you can read the state of the port. The last

value written may be read, even if the pin direction is set to output.

Keep in mind that masks do not need to be literal values, and may be represented with variables,

including enumerations.

R1.2 Page 3 of 3

You may achieve check-off for this assignment by completing any one of the following difficulty tiers:

Tier 1

Create a program that includes your new switch/LED library.

In the main program loop, check the left switch, and if it is pushed, turn on the red LED. If it is not

pushed, turn off the red LED. Test your code. When run, the red LED should be on while the left switch is

being pushed, and off when not.

Add the necessary code to have the center and right switches operate the same way on the yellow and

green LEDs respectively.

Tier 2

Similar to Tier 1, but pressing L, C, or R will turn on the corresponding LED. The LED(s) will stay on until

the top or bottom switch is pressed, turning off all LEDs.

Tier 3

Similar to Tier 2, but you will only permit a maximum of two LEDs to be on at any time. Any combination

of two LEDs is permitted.

If you can, you should modify the code so that pressing a switch toggles the associated LED, as long as

you never (even for a fraction of a second) have more than two LEDs on at a time. Getting the LEDs to

not blink at very high speed is the problem here. You may still use the same method as tier 2 for

setting/clearing the LEDs if that is easier, with the added restriction of a two LED maximum.

Note: Don’t write code that arbitrarily clears then sets LED values on a condition. This can lead to

flickering of the LED that won’t be perceptible to a human, but could be disastrous to other electronic

devices in other applications. Your code should be structured so that definitive assignment is performed,

without redundant or arbitrary assignment.

Don’t forget to call the initialization function in the ‘one-time inits’ section of your program, or the

switches and LEDs won’t function!

