3. INTERUPTS

An interrupt is a hardware event that requires the MCU to stop the normal execution of
the program to perform a service related to such event. It can be generated by some
internal (on chip) peripheral such as a timer, or by an external one, such as a button
press. The process of servicing an interrupt is done through a special function known as
Interrupt Service Routine (ISR).

Interrupts can be used to do the following:

- Coordinating I/0 tasks and preventing the MCU from being halted during such
process. Without an interrupt, the system needs to be constantly checking the status
of the I/0 device, which refers to the method known as polling.

- Performing time-critical applications. Many events require the MCU to act
immediately. Interrupts provide a mechanism to force the program to divert from
normal execution and take immediate action.

- Providing a way of exiting and application when an error occurs. There are many
interrupts that can be triggered when a certain fault flag is activated.

- Perform routine tasks. There are many embedded system applications that require
the MCU to perform some routine work at a constant time interval or a time interval
that cannot exceed certain value. Examples of these are: keeping track or real time,
periodic data acquisition, or task switching in a multithreaded operating system
(RTOS).

3.1 Interrupt Masking

Some interrupts may not be needed or desired. In this case, they should be disabled.
However, there are certain interrupts that cannot be disabled, they are known as non-
maskable interrupts. For instance:

1.2.3.24 PEO/XIRQ — Port E Input Pin 0

PEO is a general-purpose input pin and the non-maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from stop or wait mode.

In any case, to enable interrupts globally (global interrupt masking) we use the
Enableinterrupts macro and to disable them, se use Disablelnterrupts.

Aside from this masking, maskable interrupts can be enabled or disabled by setting or
clearing a specific BIT in the corresponding register. For instance, to enable the
Interrupt for PIT1 we set the BIT1 in this register (See PIT Notes).

7 6 5 4 3 2 1 0
R
W PINTE3 PINTE2 PINTE1 PINTEO
Reset 0 0 0 0 0 0 0 0

\:|: Unimplemented or Reserved

Figure 13-7. PIT Interrupt Enable Register (PITINTE)

3.2 Interrupt Priority

When using multiple interrupts, the interrupt with higher priority always gets serviced
before another one with lower priority. In the case of this micro (9512), they are
services according to the number in the interrupt vector. The lower the number, the
higher the priority

3.3 Interrupt Service Routine (ISR)

When an interrupt gets called, the system needs to stop the main program execution and
service the ISR, then go back to the main program. This is accomplished by saving the
program counter (PC) and the MCU status before executing the ISR, then restoring the
saved program counter (PC) and MCU status.

ISR Example:

interrupt Vrti ISR(
{

3.4 Interrupt Vector

As mentioned before, interrupt vectors are saved in an interrupt vector table. The
address of each vector in such a table is known as the vector address. The detailed
information about this address mapping can be found in the micro datasheet chapter 1:

Table 1-12. Interrupt Vector Locations (Sheet 1 of 3)

Vector Address’ Ch);grl\\:IElDz Interrupt Source I\ﬁ:sr\l: Local Enable
$FFFE — System reset or illegal access reset None None
$FFFC — Clock monitor reset None PLLCTL (CME, SCME)
$FFFA = COP watchdog reset None [COP rate select

Vector base + $F8 — Unimplemented instruction trap None None

Vector base+ $F6 — SWI None None

Vector base+ $F4 — XIRQ X Bit None

Vector base+ $F2 — IRQ | bit IRQCR (IRQEN)

Vector base+ $F0 $78 Real time interrupt | bit CRGINT (RTIE)

The vector addresses are also listed in the derivative file.

