

3. INTERUPTS

An interrupt is a hardware event that requires the MCU to stop the normal execution of

the program to perform a service related to such event. It can be generated by some

internal (on chip) peripheral such as a timer, or by an external one, such as a button

press. The process of servicing an interrupt is done through a special function known as

Interrupt Service Routine (ISR).

Interrupts can be used to do the following:

- Coordinating I/O tasks and preventing the MCU from being halted during such

process. Without an interrupt, the system needs to be constantly checking the status

of the I/O device, which refers to the method known as polling.

- Performing time-critical applications. Many events require the MCU to act

immediately. Interrupts provide a mechanism to force the program to divert from

normal execution and take immediate action.

- Providing a way of exiting and application when an error occurs. There are many

interrupts that can be triggered when a certain fault flag is activated.

- Perform routine tasks. There are many embedded system applications that require

the MCU to perform some routine work at a constant time interval or a time interval

that cannot exceed certain value. Examples of these are: keeping track or real time,

periodic data acquisition, or task switching in a multithreaded operating system

(RTOS).

3.1 Interrupt Masking
Some interrupts may not be needed or desired. In this case, they should be disabled.

However, there are certain interrupts that cannot be disabled, they are known as non-

maskable interrupts. For instance:

In any case, to enable interrupts globally (global interrupt masking) we use the

Enableinterrupts macro and to disable them, se use DisableInterrupts.

Aside from this masking, maskable interrupts can be enabled or disabled by setting or

clearing a specific BIT in the corresponding register. For instance, to enable the

Interrupt for PIT1 we set the BIT1 in this register (See PIT Notes).

7

3.2 Interrupt Priority
When using multiple interrupts, the interrupt with higher priority always gets serviced

before another one with lower priority. In the case of this micro (9S12), they are

services according to the number in the interrupt vector. The lower the number, the

higher the priority

3.3 Interrupt Service Routine (ISR)
When an interrupt gets called, the system needs to stop the main program execution and

service the ISR, then go back to the main program. This is accomplished by saving the

program counter (PC) and the MCU status before executing the ISR, then restoring the

saved program counter (PC) and MCU status.

ISR Example:

interrupt VectorNumber_Vrti void Vrti_ISR(void)

{
 CRGFLG = CRGFLG_RTIF_MASK; //clear flag;

//Do something

}

3.4 Interrupt Vector
As mentioned before, interrupt vectors are saved in an interrupt vector table. The

address of each vector in such a table is known as the vector address. The detailed

information about this address mapping can be found in the micro datasheet chapter 1:

The vector addresses are also listed in the derivative file.

8

