CMPE1250 — Embedded Systems Fundamentals

Carlos Estay

Real Time Interrupt (RTI)

The RTI can be used to generate a periodic hardware interrupt. We have not discussed the interrupts
much yet and we will cover it in more detail soon. For now, we will just like to use this feature to
generate an accurate interrupt that happens every 1[ms] independently from what happens in the main
loop. The other convenient aspect of the RTl is that it is gated by the OSCCLK, which is our 16][MHZ]
crystal, therefore it does not get affected if we increase the Bus Speed using the PLL.

A. Configuration

There are only two registers to configure to get the RTI setup properly:

2.3.2.8 CRG RTI Control Register (RTICTL)

Table 2-6. RTICTL Field Descriptions

Field Description

7 Decimal or Binary Divider Select Bit — RTDEC selects decimal or binary based prescaler values.
RTDEC 0 Binary based divider value. See Table 2-7
1 Decimal based divider value. See Table 2-8

6—4 Real Time Interrupt Prescale Rate Select Bits — These bits select the prescale rate for the RTI. See Table 2-7
RTR[6:4] |and Table 2-8.

3-0 Real Time Interrupt Modulus Counter Select Bits — These bits select the modulus counter target value to
RTR[3:0] provide additional granularity. Table 2-7 and Table 2-8 show all possible divide values selectable by the RTICTL
register. The source clock for the RTl is OSCCLK.

= 0b10010111;

Page | 1

Carlos Estay

CMPE1250 — Embedded Systems Fundamentals

RTR[6:4] =
RTR[3:0] 000 001 010 011 100 101 110 111
(1x10%) | (2x10%) | (5x10%) | (10x10%) | (20x10%) | (50x10%) | (100x10%) | (200x10%)
0000 (=1) 1x10% 2x10% 5%103 10x10% 20x103 50%10° 100x10° 200x10?
0001 (+2) 2x10% 4x103 10x103 20x10% 40x103 100x10% 200x103 400x10%
0010 (+3) 3x10° 6x10° 15x10% 30x10° 60x10° 150x10% 300x10° 600x10°
0011 (+4) 4x10° 8x10° 20x10° 40x10° 80x10° 200x10% 400x10° 800x10°
0100 (5) 5x10° 10x10% | 25x10° 50x10% 100x10% | 250x10% 500x10° 1x10%
0101 (=6) 6x10° 12x10% | 30x10% 60x10° 120x103 300x103 600x10° 1.2x10°
0110 (=7) 7x10° 14x10% | 35x10°% 70x10° 140x103 350x103 700x10° 1.4x10°
0111 (=8) 8x10° 16x10% | 40x10% s0x10° 160x103 400x10°% 800x10° 1.6x10°
1000 (+9) ax102 18x%10% 45x103 a0x102 180x103 450x10% 900x103 1.8x10°
1001 (+10) 10x10% | 20x10% 50x10% 100x10% 200x103 500x10% 1x10% 2x108
1010 (11) 11x10% | 22x10% 55x10% 110x10% 220x10°3 550x10% 1.1x108 2.2x108
1011 (+12) 12x10° 24x10% 60x103 120x10% 240x103 600x10% 1.2x108 2.4x108
1100 (+13) 13x10° | 26x10® | 65x10% | 130x10% | 260x10° | 650x10% 1.3x10° 2.6x10°
1101 (+14) 14x10° | 28x10® | 70x10% | 140x10% | 280x10° | 700x10% 1.4x10° 2.8x10°
1110 (+15) 15x10° | 30x10® | 75x10% | 150x10% | 300x10® | 750x10% 1.5x10° 3x108
1111 (+16) 16x10% 32x10% | 80x10% 160x10% 320x103 800x103 1.6x108 3.2x108
2.3.2.5 CRG Interrupt Enable Register (CRGINT)
7 6 5 4 3 2 1 1]
0 0 0 0
W RTIE ILAF LOCKIE SCMIE
Reset 0 1 0 0 0 0 0 0

We just have tpo SET(1) RTIE to enable the RTl interrupt

Page | 2

Carlos Estay NAIT CMPE1250 — Embedded Systems Fundamentals

&

B. Interrupt Handling

To handle the interrupt we perform the following actions in the Interrupt Service Routine (ISR)

- Clear Flag in the CRGFLG register by putting a (1) in the RTIF bit

T 6 5 4 3 2 1 0
R LOCK TRACK SCM
RTIF PORF LVRF LOCKIF SCMIF
w
Reset 0 1 2 0 0 0 0 0

- We perform any action desired, this action will happen every 1 [ms] in this case, so a good idea
is to increment a millisecond counter here.

interrupt Vrti Handler(

Page | 3

