
CMPE1250
Winter 2025
v1.1

ICA 7
Real-Time Interrupt

1 Introduction

Up to this point, you have only been able to create accurate timing by using while() loop blocking
delays in your code. You should have seen in a previous ICA that these delays will be affected by
changes in the bus speed. The length of your code’s super loop will also change the timing of these
blocking delays. Blocking delays will also prevent your code from doing anything productive while
they are running. The responsiveness of whatever embedded system you are building will be severely
impeded by long blocking delays.

In this assignment, you will be exploring the real-time interrupt (RTI) module. This will allow you
to create extremely accurate timing intervals without the need to measure or calculate the execution
time of a loop. While you will occasionally need to use blocking delays, the RTI will allow you to
easily make non-blocking delays as well. The timing of these intervals will be dependant on the external
oscillator on your microboard; changing the bus speed or the length of your super loop won’t effect
your delays. To do this, you will need to create a library to initialize the RTI. You will also need to
create an interrupt service routine (ISR) to define what happens each time the interrupt is triggered.

2 Outcomes

This assignment is designed to assess your ability to:

� Build a reusable library to interact with the RTI

� Configure the RTI to create accurate time intervals

� Create an ISR that can function with the RTI

� Use non-blocking delays to accurately blink LEDs at different rates

� Discover how an ISR is executed

� Determine what the volatile and extern keywords do

� Infer the difference between a blocking delay and non-blocking delay

3 Assignment

In this assignment, you will be developing the rti.c file for your RTI library. This will involve writing
one function to initialize the RTI and one function that will implement a blocking delay with the RTI.
You will also create an ISR so you can do something useful when the RTI is triggered. You will be
blinking LEDs in this assignment, but the RTI will be used to implement lots of features throughout
the rest of your embedded courses.

3.1 Initialize the RTI

Create your rti.c file and define the RTI_Init() function. This function will need to initialize the
interrupt to trigger every 1ms.

You may have noticed the following External Volatile Variables near the top of the rti.h file. These
variables will need to be added to rti.c as global variables without the extern keyword. If you are
unfamiliar with the extern or volatile keywords, please refer to Appendix A.

Listing 1: External Volatile Variables

//These variables have to be declared as global variables,

// but without the extern keyword in rti.c

extern volatile unsigned long rtiMasterCount;

extern volatile unsigned int rtiDelayCount;



CMPE1250 ICA 7 - Real-Time Interrupt

Once your RTI initialization function has been written, you will need test it. This will require you
to add an interrupt service routine to main.c. The ISR does not need to be prototyped because it
should never be called by software. However, it does need a very specific declaration to tell the MC9S12
compiler that this function is the service routine for the real-time interrupt. An ISR Template with
the correct declaration has been provided for you below.

All ISRs should begin by clearing the interrupt, or the program will get stuck in a loop forever
running the ISR. The RTI service routine should also increment rtiMasterCount so you have a method
of counting milliseconds as your program is running. For this assignment, also toggle the red LED in
the ISR. This will give you a visual indicator that it is working. You can also measure the frequency
of the LED to verify that the ISR is running every 1ms.

Listing 2: ISR Template

interrupt VectorNumber_Vrti void Vrti_ISR(void){

//Clear the interrupt flag

//Increment rtiMasterCount

//Toggle the red LED

}

If your RTI is not working and you are confident that it has been initialized correctly, verify that
you have uncommented the EnableInterrupts; line in main.c. If that line is commented out, all of
the interrupts in your microcontroller will be disabled. This is a common mistake that is very easy to
make. Make sure that you have also called the RTI_Init() function in the One-Time Initializations
section of your code.

3.2 RTI Blocking Delay

Now that your ISR is working correctly, you can define the RTI_Delay_ms() function. This function will
use the rtiDelayCount variable to implement a blocking delay. Depending on your implementation,
you will need to increment or decrement the rtiDelayCount variable in your ISR. You will pass an
integer into RTI_Delay_ms() and it will not return until that many milliseconds have passed. For
example, RTI_Delay_ms(50) should create a 50ms blocking delay. Unlike your previous blocking
delays, this function will not be effected by the bus speed or the length of your super loop.

Once your delay function is complete, use it to toggle the green LED every 50ms in the main loop.
You should end up with a waveform as shown in Figure 1.

3.3 Long Delay with LED Select

Modify your main loop so the blocking delay is 1 second long. Also add functionality such that when
the left button is pressed, the green LED turns off and the yellow LED toggles every 1 second. When
the right button is pressed, the yellow LED should turn off and the green LED will begin toggling
every 1 second again.

3.4 Button Responsiveness

In the previous section, you may have found that the buttons were very unresponsive. That is because
they were only being checked once per second; they may need to held for a full second before the
button press is recognized by the microcontroller. Modify your code to fix this issue. There are many
ways to correct this problem, but you must end up with code that retains all the functionality of the
previous section without blocking the microcontroller from checking the buttons. The buttons should
seem very responsive to a user. Your solution should not cause the ISR execution time to greatly
increase.

v1.1 2 of 5



CMPE1250 ICA 7 - Real-Time Interrupt

Figure 1: Part 2 Waveform

Appendices

A C Keywords

A.1 Extern

When you put #include "rti.h" in main.c, all of the contents of rti.h get pasted into your main
C file at that spot. This is important to remember because it means that the code in the External
Volatile Variables listing is actually a part of main.c; rtiMasterCount and rtiDelayCount are global
variables in main.c. This is a good thing because you will need to access those variables from functions
in your main C file. However, you will also need to access those variables from other C files.

The extern keyword tells the compiler that the variable already exists in another C file and
that this declaration is just a reference to it. When you create your rti.c file, you will need to
declare rtiMasterCount and rtiDelayCount without the extern keyword. This means that the
actual variables will be declared and have memory allocated when rti.c is compiled. All of the other
C files that need access to those variables have to declare them with the extern keyword. Because
the variables are included in rti.h with the extern keyword, every compilation unit that includes rti.h
will have access to those two variables.

A.2 Volatile

Interrupts allow functions to be called by hardware rather than being called in software. An interrupt
could be triggered by a button press, a timer, a communication module, or any other number of
things. This is great for us as embedded developers because it means that we don’t need to poll
registers to decide when to run some function. When the RTI triggers, your interrupt service routine
will automatically run. You can also use interrupts to automatically handle data on the serial port. If
you use the microcontroller’s analog to digital converter, you can have an interrupt trigger when it is
done converting a measurement. There are lots of uses of interrupts. They can make your code run
faster and they can allow you to create low-power embedded devices. The microcontroller can sit in
a low-power mode waiting for something to happen rather than constantly checking to see if it has
happened.

Interrupts are a nightmare from the compiler’s perspective. The programmer has given it functions

v1.1 3 of 5



CMPE1250 ICA 7 - Real-Time Interrupt

that are never called in software. There are variables that are read from, but are only written to in
these functions that are never called. When the compiler tries to optimize your code, it won’t know
what to do with all of these variables that need to be accessed at random and outside of the normal
program flow. It will try to save RAM by converting them to constant values, but then the developer
(you) starts getting upset about it. The volatile keyword lets the compiler know that these variables
are volatile; they’re likely to change or be accessed at any time without notice, even if it’s outside
of the normal program flow. The volatile keyword is your way of telling the compiler that it can’t
optimize some variables. The memory for those variables needs to be permanently reserved in RAM
and it always needs to be accessible. If you use a variable in an ISR, it should be declared with the
volatile keyword.

A.3 Further Readings

GeeksForGeeks: Understanding the extern Keyword in C
GeeksForGeeks: How to Use the volatile Keyword in C

v1.1 4 of 5

https://www.geeksforgeeks.org/understanding-extern-keyword-in-c/
https://www.geeksforgeeks.org/use-volatile-keyword-in-c/


CMPE1250 ICA 7 - Real-Time Interrupt

B RTI Header File

1 //RTI Module Library

2 //File: rti.h (header file)

3 //Processor: MC9S12XDP512

4 //Crystal: 16 MHz

5 //by Carlos Estay

6 //September 2023

7 //Last edit, September 13th, 2023

8

9

10 //These variables have to be declared as global variables,

11 // but without the extern keyword in rti.c

12 extern volatile unsigned long rtiMasterCount;

13 extern volatile unsigned int rtiDelayCount;

14

15

16 /// @brief Enables RTI Module

17 /// @param

18 void RTI_Init(void);

19

20 /// @brief Blocking delay to be used once the RTI Module is enabled

21 /// @param timeout

22 void RTI_Delay_ms(unsigned int timeout);

23

24

25

26 /*The following 2 functions will be implemented in 2250*/

27 /// @brief Enables RTI Module with callback to be used in main

28 /// @param function

29 void RTI_InitCallback(void(*function)(void));

30

31 /// @brief Enables RTI Module with callback to be used in main and called

32 /// every "x" milliseconds

33 /// @param function

34 /// @param interval in [ms]

35 void RTI_InitCallback_ms(void(*function)(void), unsigned int);

v1.1 5 of 5


	Introduction
	Outcomes
	Assignment
	Initialize the RTI
	RTI Blocking Delay
	Long Delay with LED Select
	Button Responsiveness

	C Keywords
	Extern
	Volatile
	Further Readings

	RTI Header File

