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The Serial Communications Interface (SCI) 
Your 9S12 micro contains SCI modules for asynchronous serial communications. You will use one of the 
SCI modules to communicate with the PC, although the SCI module may communicate with any other 
compatible UART (Universal asynchronous receiver-transmitter). If you are directly interfacing to 
another UART, you will likely not use RS-232, but TTL levels instead. 

In order to connect to a PC the TTL-level signals (0-5V) from the SCI must be converted to RS-232 levels 
(~±10V). Your board contains a chip dedicated to this task, and the signals are brought to a standard RS-
232 DB9 connector on the top edge of your board. RS-232 permits much longer distances between 
devices and has some resistance to signal interference. NOTE: The use of RS-232 does not change the 
timing of the UART signal, it just uses a different signaling scheme. 

Your board has an IrDA transceiver as well on SCI1. We may not get to use this port in this course, but 
IrDA is good for ~1m and uses infrared light as the physical layer. Using infrared light provides extreme 
electrical isolation between the two communicating devices. 

 

While RS-232 supports additional signaling options, we will be using only three wires: ground, transmit 
data, and receive data. 

In asynchronous communications, the transmitter may begin a data send operation to the receiver at 
any time. Once started, a complete block of data (known as a data character) must be completely 
transmitted. The delay between data characters may be any length. Transmission of the individual bits 
in the data character is driven by a local clock. The transmitter and receiver must operate independent 
clocks that are approximately equal in rate to correctly exchange data. The term ‘asynchronous’ refers 
to the fact that the clocks on the two devices are independent (there is no synchronizing clock signal), 
and communication can be initiated at any time. 

Because we are reading and writing bytes in serial communications, the SCI module acts as a parallel-to-
serial and serial-to-parallel converter. 
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The RS-232 protocol allows for a wide range of signaling characteristics. Here are a few: 

● ‘Standard’ transmission rates from 75-115200 BAUD* (these are specified speeds only, like 9600, 
not just any value in that range). 

● Data may be sent as 7-bit standard ASCII characters, 8-bit extended ASCII characters, or binary 
data (note: this is interpretation, data is data). 

● Simple error checking via parity is possible. 
● The minimum time between characters (stop bits) may be adjusted. 
● Handshaking and flow control are possible. 

The SCI on our board also supports a 9-bit mode, but we won’t use this, as it is non-standard, and is 
more complex to operate. 

We will use the very common 8N1 configuration. This means one start bit, eight bits of data, no parity, 
and one stop bit. The start bit signals the start of communications. The eight bits that follow are the data 
payload, and the stop bit is used to set a minimum time between characters. The stop bit was once used 
to ensure that the receiver had time to process the received character, but this is not normally a 
consideration for modern equipment. 

*BAUD is a pseudo acronym that effectively means “Bits per Second”. You may find references that 
describe it as “Bits of Actual Usable Data”, but this is confusing, as the start bit, stop bit(s), and optional 
parity bit are not part of the data payload. The actual signal is 8 of 10 bits transmitted in the 8N1 format. 

Note: when converted to RS-232, the UART TTL signal is inverted, bipolar, and non-return-to-zero! 

The yellow trace in the 
background is the RS-
232 signal viewed on a 
scope (±7V).  

The image imposed on 
top is from the 
protocol analyzer in 
the AD2 (0-5V).  

 

 

Data is sent least significant bit first, so the data appears ‘backwards’ from how we normally view it. 

When the signal is idle, the RS-232 level is negative with respect to ground. This is known as ‘MARK’. 

When the signal is active, the RS-232 level is positive with respect to ground. This is known as ‘SPACE’.  

By not using common (ground) for any valid signal (non-return-to-zero), RS-232 is easier to 
troubleshoot: if a signal is at ground, it is not connected correctly! 
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Setting the BAUD rate 
The SCI module uses a clock 16 times the BAUD rate for sampling. To reserve clock for this, the bus rate 
is inherently divided by 16, then by the 13-bit SCIBD register. For example, if you wanted a BAUD rate of 
9600, you would divide 20E6 / 16 / 9600 = 130.20833. You can’t put a fraction into the integral 
register, but 130 is 99.84% of ideal.  

For some rates, the denominator can get pretty big, which is really bad in integer division. For example, 
with the fastest ‘standard’ rate of 115200, we run into a problem: 

20E6 / 16 / 115200 = 10 in the integer realm, but that value was truncated from 10.85, so a value of 11 
would provide a more accurate BAUD rate. You can still use integer division to calculate the value for the 
SCIBD register, you just need to provide rounding that will push the value up the next whole number if 
truncation would lose a fraction over 0.5. This is achieved by multiplying the operands by 10, adding 5 to 
the result, then dividing the overall result by 10. Doing this adds a ‘half’ to what would be the digit to the 
right of the decimal point. When truncation occurs, if the original value was less than 5 then there is no 
change; if the value was 5 or more, the added 5 ‘rounds’ it to the next digit prior to truncation. 

Consider the 115200 BAUD example from above (all calculated with integer types): 

20E6 / 16 / 115200 = 10 (original integer value) 

20E6 * 10 / 16 = 12500000  

12500000 / 115200 = 108 

108 + 5 = 113 

113 / 10 = 11 (with rounding implemented) 

Using this method will provide more accurate BAUD rate values. 

As it turns out, that oversampling permits some tolerance in the BAUD rate, and if the actual rate is 
within ~2% of ideal, the communications should function. 

Remember that whatever value you put in the BAUD register must be limited to 13 bits, so the max 
divisor is 8191. Using a divisor of zero will disable the BAUD generator. 

Most communications programs will expect one of several fixed BAUD rates. The following is a list of 
‘standard’ BAUD rates, where ones in red are particularly common: 

75, 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200. 

If your computer is not equipped with an actual serial port, you may need to use a USB to RS-232 
adaptor cable. Some of these cables will not work with all rates (generally the very low ones). 
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If you are using a PC, there is generally a serial port available, but it might only be pinned out on the 
motherboard, and you would need to procure a cable to bring it to a connector on one of the expansion 
slots. Laptops, generally, do not have serial ports available – you must use a converter cable from USB. 

  
 
There are several SCI modules on our chip, and the port you are using needs to be distinguished when 
using the registers: 

 

The naming convention is to use the module number in the register name: 

SCI0BD = 130; 
 
SCI0 is the SCI module that is connected to the DB9 on your board. SCI1 is the SCI module that is 
connected to the IrDA module (infrared data). The remaining SCI ports should not be used, as these pins 
are allocated for other devices or modules (by the design of the board). 

Once the BAUD rate is set (both devices must be set to the same BAUD rate), you must enable the SCI. 
Like other modules, this unit is powered off out of reset. 

The SCICR2 register is used to configure parts of the SCI. You are looking to turn on the transmitter and 
receiver, so the TE and RE bits of SCICR2 need to be set to 1: 

SCI0CR2 = 0b00001100; 
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NOTE: The SCI can generate interrupts for four different conditions. Eventually, we will use interrupts to 
manage processing of received data. Initially, you will poll for received data, to get a basic idea about 
how data is sent and received. 

Much of the status of the SCI module is revealed through the SCISR1 register: 

 

The two flags that are of principal interest are TDRE and RDRF. If TDRE is a 1 when the module is ready to 
accept a byte for transmission. You will check to ensure this flag is set before you attempt to send a 
byte. 

The RDRF flag indicates that a new byte has been received. Initially you will use polling to check this bit to 
see if a byte has arrived for processing. If the flag is set, reading the flag then reading the byte from 
SCIDRL will clear it, making the module ready for another byte reception. 

The following code demonstrates how to configure SCI0 for 9600 BAUD communication. It will attempt 
to send out bytes as fast as possible, and display ASCII codes on the segs if a byte is received: 
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void main(void) 
{ 
  // main entry point 
  _DISABLE_COP(); 
  EnableInterrupts; 
   
  /********************************************************************/ 
  // initializations 
  /********************************************************************/ 
  PLL_To20MHz(); 
  SWL_Init(); 
  Segs_Init(); 
 
  // do SCI startups 
  SCI0BD = 130; // 20E6 / (9600 * 16) // 11.3.2.1 
   
  SCI0CR2 = 0b00001100; // turn on TX/RX // 11.3.2.6  
 
  /********************************************************************/ 
  // main program loop 
  /********************************************************************/ 
  for (;;) 
  { 
    // if the transmitter buffer is empty, load a new byte to send (TX) 
    if (SCI0SR1_TDRE /*&& SWL_Transition (SWL_CTR)*/) 
      SCI0DRL = rand() % 26 + 'A'; 
 
    // if a byte has been received, pull it! 
    if (SCI0SR1_RDRF) 
      Segs_8H (2, SCI0DRL); 
  }                    
} 
 

The main loop will run very quickly, as the micro is very fast relative to 9600 BAUD. In fact, a fun activity 
to try would be to figure out how many iterations the main loop runs for each character transmission 
(maybe add that code and put it on the second segs line). 

Seeing the characters sent and received may be done at the UART level with the AD2, and at RS-232 
levels with a terminal program. 

Both the AD2 and terminal programs will allow you to send and receive characters, but you may also 
write programs in C# that use serial communications. 
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You will need to build up a library for the SCI that is capable of initializing the SCI, blocking send, non-
blocking send, blocking receive, non-blocking receive, and possibly interrupt management: 

// sci 0 - normal mode ******************************** 
// set baud, returns actual baud 
unsigned long sci0_Init (unsigned long ulBusClock, unsigned long ulBaudRate); 
 
// read a byte, non-blocking 
// returns 1 if byte read, 0 if not 
int sci0_read (unsigned char * pData); 
 
// blocking byte read 
// waits for a byte to arrive and returns it 
unsigned char sci0_bread (void); 
 
// send a byte over SCI (blocking) 
void sci0_txByte (unsigned char data); 
 
// send a null-terminated string over SCI 
void sci0_txStr (char const * straddr); 
 
// receive a string from the SCI 
// up to buffer size-1 (string always NULL terminated) 
// number of characters is BufferSize minus one for null 
// once user enters the max characters, null terminate and return 
// if user enters 'enter ('\r')' before-hand, return with current entry (null terminated) 
// echo valid characters (non-enter) back to the terminal 
// return -1 on any error, otherwise string length 
int sci0_rxStr (char * const pTarget, int BufferSize); 
 
// set/clear interrupt flags for SCI0 
void sci0_SetIntFlag (unsigned char flags); 
void sci0_ClrIntFlag (unsigned char flags); 
// sci 0 - normal mode ******************************** 
 
These topics will be covered in class with demonstrations.  

  



R1.8 (Mar 2022)  Page 36 of 68 
 

Using SCI Interrupts 
The most useful interrupt for the SCI is arguably the Receiver Full Interrupt. This interrupt will occur 
when a byte has been received and is ready to be pulled from the receive buffer. Because we typically 
don’t know when a byte will arrive, and one could never arrive, this interrupt can save a lot of polling. 
Additionally, if we want to use the micro for CPU intensive work while performing communications, 
particularly higher-speed communications, the interrupt model can make the code more responsive, 
less prone to missing data, and more efficient. 

The SCI module routes all interrupt events to a single ISR, so if you request more than one interrupt 
source, you must determine the source of the interrupt in the ISR by flag checking. If you have only one 
interrupt cause enabled, you may skip this step. 

Interrupts for the SCI are managed through the SCIxCR2 register, as shown above. To enable an interrupt 
when data is fully received, you would set RIE to 1. 

// setup interrupt for RDRF 
SCI0CR2_RIE = 1; 
 

In doing so, you have committed yourself to dealing with this interrupt. You will need a suitable ISR: 

interrupt VectorNumber_Vsci0 void ISR_SCI0 (void) 
{ 
    // single read to capture flags 
    unsigned char status = SCI0SR1; 
 
    // if you've done more than one interrupt on this device 
    //  you need to identify the interrupts, otherwise, clear the 
    //  one and only one you asked for... 
     
    // TDRE: cleared by reading SCI0SR1 w/B7 set, then write to SCI0DRL 
    // RDRF: cleared by reading SCI0SR1 w/B5 set, then reading from SCI0DRL 
 
    // check SCI0SR1 for RDRF, this does the int clearing operation (use lib function) 
    if (status & SCI0SR1_RDRF_MASK) 
    { 
      // retrieve byte by reading from SCI0DRL (use library method) 
    } 
     
    // other flags may still be set (if requested), so continue checking other int sources 
    if (status & SCI0SR1_TC_MASK) 
    { 
      // send next byte by writing to SCI0DRL (use library method) 
    } 
} 
 
Normally you will only have RIE enabled, so the ISR is simpler than shown above. Section 11.3.2.7 in Big 
Pink discusses flag clearing for each interrupt flag in the SCIxSR1: 
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For RIE and any other interrupts you end up using, you must adhere strictly to the flag clearing 
mechanism. Your library functions should be written to automatically clear the flags through normal 
behavior.  

The following program, for example, will display received characters on the segs using interrupts: 

void main(void) 
{   
  // main entry point 
  _DISABLE_COP(); 
  EnableInterrupts; 
   
  PLL_To20MHz(); 
  Segs_Init(); 
 
  // start SCI at 38400 
  (void)sci0_Init(20E6, 38400); 
 
  // setup interrupt for RDRF 
  SCI0CR2_RIE = 1; 
   
  for (;;) 
  { 
    asm wai; 
  }                 
} 
 
interrupt VectorNumber_Vsci0 void ISR_SCI0 (void) 
{ 
  // only one source of interrupt! RIE (RDRF), no need to check flags! 
  // your blocking read will test RDRF and read data 
  // flag is cleared via bread function! 
  unsigned char data = sci0_bread(); 
  Segs_8H (0, data); 
} 
 

In the case of a single interrupt source, the ISR is much simpler to write! Most of the time this is what 
you will be doing, but you should be prepared for more complex operation of the SCI. 

How you handle the data in the ISR is worthy of note. Remember that you don’t want the ISR to be long 
in execution, as it will suspend subsequent interrupts. At high data rates, this could mean the loss of 
data. Ideally the ISR will simply put the received character into a buffer (queue or similar) for processing, 
and the main code would deal with it, but this is beyond the scope of this course.  

You will instead store the received data in a location visible to the main program code and will use a flag 
to indicate availability. As a result, the data processing work you will do will be relatively simple. 

 

  


