
CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Serial Communication Interface (SCI)
To exchange data between the MCU and other external peripherals such as the 7-segment

display or lcd display, we use parallel data transfer. However, parallel data transfer requires

many I/O pins. Also, the longer the distance, the more difficult the parallel data transfer becomes

in terms of synchronization, because the parallel bits need to arrive around the same time on the

other end.

The SCI is one of the existing means of serial communication in the micro board. We

will later study other synchronous serial communication protocols such as SPI and I2C. One

unique feature of the SCI is that it allows us to transfer data asynchronously using only 2 pins,

aside from the signal ground: Rx and Tx, not needing a clock pin. In order for this to work, both

ends need to use the same Baud Rate (speed).

The SCI was designed to operate utilizing the industrial standard TIA-232, most

commonly known as RS-232. The TIA-232 standard most updated revision (revision F) was

published in 1997 by the Telecommunications Industry Association.

While the microcontroller is 5[V] logic (0[V] for logic 0 and 5[V] for logic 1), the TIA-

232 standard defines different voltage levels, therefore we need an RS232 transceiver to interface

the sci with the outside world.

Figure 1- TIA-232 Voltage Levels

https://global.ihs.com/doc_detail.cfm?&csf=TIA&input_doc_number=TIA%2D232&input_doc_title=&org_code=TIA&document_name=TIA%2D232&item_s_key=00125234&item_key_date=870024&origin=DSSC

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

The RS232 transceiver can be identified in the board schematics, it’s labeled as IC2. The

RS232 transceiver outputs then connect to the DB9 port on the back of the board. From the DB9

port, we can connect to a computer using a regular RS232 cable. Most recent computers most

likely will not have a native RS232 port, in which case an RS232 to USB adapter will be

required.

Figure 2- RS232 Transceiver

Figure 3- RS232 Cable Figure 4- USB to RS232 Adapter

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Configuring the SCI

The microcontroller has more than one SCI. According to the schematics, only SCI0 is

connected to an RS232 transceiver and therefore to the DB9 port that we will connect to the

computer. We can also see in the schematics that the SCI1 is connected to an Infrared transceiver

(IC1) that you can find beside the DB9 connector (to the left). We will not have time to cover the

infrared transceiver during this course, but you could experiment with it in the future.

There are Five more SCIs: SCI1, SCI2, SC3, SCI4 and SCI5. If we look at the peripherals

diagram in page 35 of the datasheet or in the course notes diagram, we could find them. Some of

them are multiplexed with other peripherals, so to be able to use them may require extra register

configuration. To locate the pins of the one we are going to work with, we look for PS0 (RXD0)

and PS1 (TXD0).

• PS0 (RXD0) is PIN 89

• PS1 (TXD0) is PIN 90

Figure 5- SCI0- SCI5 Location

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Configuring the SCI0

There are mainly 3 registers that we will need to configure to Initialize the SCI0

peripheral, although the first register we will just leave it defaulted to zero. Please note the

registers we are working with are named SCI0xxx. The datasheet displays the general names for

the registers, noting that they would work the same way for any SCI peripheral: SCI0xxx,

SCI1xxx, SCI2xxx…etc.

Figure 6 - SCI Block Diagram

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Control Register 1: SCI0CR1

• All the default settings work here.

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Control Register 2: SCI0CR2

• We need to enable receiver and transmitter: Set (1) BIT2 and BIT3

• If we like to use interrupts for the receiver: Set (1) BIT5

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Baud Rate Register: SCI0BD

Although this register is separated into two 8-bit registers, we will use the 16-bit access

directly through the SCI0BD register.

• We leave BIT7 – BIT5 set as default 0

• We enter the baud rate setting in: BIT12 – BIT0

Since we will not be using the Infra-Red (IREN = 0), our baud rate setting will be as:

𝑺𝑩𝑹[𝟏𝟐: 𝟎] =
𝑩𝑼𝑺 𝑺𝒑𝒆𝒆𝒅

𝟏𝟔 × 𝑫𝒆𝒔𝒊𝒓𝒆𝒅 𝑩𝑹

We approximate the result to the nearest integer value.

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Writing to the SCI0 (Transmitting)

To write data to the SCI, we need to write the SCI0DRL register.

Before we write data to the register, we need to make sure the register is ready to receive data.

To do that, we check the TDRE bit of the SCI0SR1 register. We wait while the flag is ‘0’.

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Example

//Blocking 1 byte transmission

while(!(SCI0SR1 & SCI0SR1_TDRE_MASK));//Wait till transmit data register is empty

SCI0DRL = data;

//Non-locking 1 byte transmission

if(SCI0SR1 & SCI0SR1_TDRE_MASK) //Check if transmit data register is empty

{

SCI0DRL = data;

}

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Reading from the SCI0 (Receiving)

To read data from the SCI, we need to read the SCI0DRL register. Please note that the

receiving and transmitting happens in the same register. How is this possible? Maybe looking at

figure 6 can give us a clue.

Before we can read the data from the register, we need to make sure there is data ready to be

read. To do that, we check the RDRF flag in the SCI Status Register 1, SCISR1.

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

There are two options for knowing if there is data available in the register:

• Poll the flag, then as the register information describes, checking such flag and then

reading the register clears the flag automatically.

Example

unsigned char data;

//Blocking receiving

while(!(SCI0SR1 & SCI0SR1_RDRF_MASK)); //Wait till a character is received

data = SCI0DRL;

//Non-blocking receiving

if(SCI0SR1 & SCI0SR1_RDRF_MASK) //Check if a character has been received

{

data = SCI0DRL;

}

• Enabling interrupt by setting the RIE bit in the SCI0CR2 register. Once a character is

received, the flag being active will trigger the interrupt, then in the ISR (Interrupt Service

Routine). To read the data and clear the flag, we mask the RDRF bit of the SCI0SR1

register, then we need to read the data from the SCI0DRL register.

Example

interrupt VectorNumber_Vsci0 void Vsci0_ISR(void)

{

 if(SCI0SR1 & SCI0SR1_RDRF_MASK)

 {

 data = SCI0DRL;

 }

}

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Pointers
A pointer is a variable that holds the memory address of another variable, constant or

literal. They allow us to perform a call by reference in a way that variables outside the scope of

the function can be modified within such function. They are also useful for managing strings as

an array of characters, where the pointer can “point” to the beginning of such array or any

specific character within the array.

Declaring a Pointer Type

Declaration:

type * identifier; Where type can be any atomic (int, char, etc) or a custom type

previously defined using a typedef, and identifier is the name of the pointer variable.

We say that the actual type of the pointer is not type, but type *. For instance:

Int* pMyInt is a pointer to a variable of type int, therefore the type of such pointer is int*

and holds the address of an int variable.

Assigning a pointer

Once we have declared a pointer, we can then assign an address of a variable or constant /

literal to it. To do that, we use the address (&) operator. For instance:

Int MyInt;

Int* pMyInt = &MyInt;

Obtaining the Content of the Variable Pointed

Once we have declared and assigned a pointer, we can now reference the variable using

the pointer name with asterisk in front of it, in which case we can read such variable or assign a

new value to it. For instance:

Int MyInt;

Int* pMyInt = &MyInt;

*pMyInt = 5; // Assigns 5 to the variable being pointed by pMyInt, MyInt

Int sum = *pMyInt + 2 //Assigns 5+2 into sum

CMPE1250 - Embedded Systems Fundamentals Using the 9S12XD

Using Pointers to Structures

We can access the structure through the pointer, just like any variable, then we can

reference the structure member using the accessor: “.” Operator. For instance:

typedef struct MyStruct_

{

int Member1;

float Member2;

} MyStruct;

MyStruct record;

MyStruct * pMyStruct = &record;

*pMyStruct.Member1 = 5;

*pMyStruct.Member2 = 2.5;

 Since accessing structure elements via pointers is common and useful, an alternative and

easier to understand syntax is available:

pMyStruct->Member1 = 5;

pMyStruct->Member2 = 2.5;

Operations with pointers

Since a pointer variable holds an address, it therefore holds a number, which could be

incremented or decremented, meaning that incrementing such pointer would make it point to the

next address, or decrementing it, would make it point to the previous address; the addresses

would be incrementing or decrementing a number of bytes equal to the size of the variable that is

being pointed. For instance, a pointer to a char variable would increment /decrement by 1 byte,

while a pointer to an int (16 bytes) would make increments / decrements of 2 bytes.

 This type of operation can be extremely dangerous as we could make the pointer point

to a wrong address by mistake, so caution must be taken with using pointer arithmetic.

