
R1.1 Oct 2022 Page 1 of 5

CMPE1250 – Strings, Pointers, and the IDE

You will often wish to send strings to the LCD. Before you can do that, you need to review some of the

details on using string with this platform.

Strings in C are simply an array of char, with the last element being a literal zero. This is often referred to

as a “NULL-terminated string”. This is a terrible name, as NULL is typically reserved for pointer with no

valid address, or NULL has special meaning in database terminology. In C, NULL does take on the value

zero, and the literal zero in the ASCII table is called ‘NUL’, so the confusion intensifies.

Zero is a good choice to terminate a string, as it will never appear as a valid ASCII code for anything you

would put in a string. Any functions that operate the string may look for the ‘NUL’ to locate the end of

the string.

Creating a string in C may be done with the following syntax, using a string literal:

char const StrHello [] = "Hello!";

String literals (the part in double quotes), will automatically be NUL terminated. You must always ensure

you leave enough room in arrays/buffers/allocations to accommodate the NUL character, which is the

string length + 1. Care must also be taken to ensure that a programmatically created string contains a

NUL character!

Strings are passed to functions as pointer to char, and should have const modifiers on either the pointer

or target, if the function is not meant to modify those parts. These modifiers on the formal argument

may be more restrictive than the actual argument for the target, but not less. Placing the correct const

modifier on the target will prevent accidental modification to the target in the calling scope.

The above string would be passed to a function as shown. This function does not intend to modify any

part the string, nor alter the pointer during execution of the function. Remember that the name of an

array is a pointer to the first element of the array!

char const StrHello [] = "Hello!";

void foo (char const * const pStr)

{

 lcd_StringXY (5, 1, pStr);

}

R1.1 Oct 2022 Page 2 of 5

If a function intends to use the formal argument for operational code, it may leave the pointer as non-

const, as it is getting a copy of the pointer, and can’t modify the actual argument anyway:

char const StrHello [] = "Hello!";

int foo (char const * pStr)

{

 int iStrLen = 0;

 while (*(pStr++))

 ++iStrLen;

 return iStrLen;

}

// calling code

Segs_16D (foo (StrHello), 0); // outputs 0006

This permits the formal argument to manipulate the copy of the actual pointer it receives to do its work

but does not need to modify the target (the actual characters of the string).

Of course, you could just call a function with a string literal if it is appropriate to do so:

// calling code

Segs_16D (foo ("How long am I?"), 0); // outputs 0014

You may create strings programmatically as well. The following code creates a pseudo-random five-

character string, and appropriately terminates it with a NUL:

void GenStr (char * const pStr)

{

 int i;

 for (i = 0; i < 5; ++i)

 pStr[i] = rand() % ('Z' + 1 - 'A') + 'A';

 pStr[i] = 0;

}

Note: a function would never return a pointer to stack memory (a pointer created in the function). The

target buffer must persist beyond the function scope, so it would typically be creating in the calling

scope and be populated by the function.

R1.1 Oct 2022 Page 3 of 5

Calling code:

{

 char buff [6] = {0};

 GenStr (buff);

 lcd_StringXY (0, 0, buff);

}

Initializing an array with NULs is an effective way to ensure that the string will be correctly terminated. If

the modifying code only modifies array size – 1 elements, then the residual NUL from initialization will

terminate the string. This function example does not do this, but it is a possibility.

You may also create formatted strings with sprintf from the stdio.h library.

The sprintf functions is somewhat analogous to string interpolation in C#, but much less sophisticated.

A format string is interpreted for specifiers that indicate argument substitutions within the string. The

format specifiers are removed and the arguments are formatted and put in their place. The entire string

is written to a provided buffer.

C does not offer much protection from errors, and the buffer length, argument count, and argument

types can all contribute to errors or unpredictable behavior, so you must be careful when constructing

sprintf calls.

The following examples should be studied to see how sprintf can produce formatted output:

//#include <stdlib.h>
// useful functions: rand, srand, atoi, atof, atol

// rand will return a random number, from 0 to intmax (or 0x7FFF)
// srand can be used to seed the random number generator (same sequence per seed)

// atoX functions return numeric conversion of string representation, where possible

//#include <stdio.h>
// useful functions: sprintf, sprintf_s, scanf, scanf_s (also full file functions, but not here...)

// we use printf to send text to the console (if only we had one)
// we use sprintf to send text to a string (a buffer)
// sprintf uses text with special character sequences to specify formatting
// the % character specifies the start of such a sequence
// %d would mean decimal
// %f would mean floating point
// %s and %c exist as well (string, character)
// minimum width, padding, and precision can also be specified, and mean
// different things depending on the format specifier used
// additional arguments are passed to the sprintf function as required to satisfy
// the format specifiers
// width and precision are specified as W.P in the format specifier
// width means minimum width
// precision means padding for int, number of digits R of DP for float

// NOTE: errors or garbage will be the result of mismatch in args or arg types
// NOTE: the special sequence is swapped for the formatted output in the resultant string
// NOTE: other characters, like <CR><LF> are represented by \r or \n
// there are others too, like \t \b
// \\ would mean a \ actual, %% would mean % actual

R1.1 Oct 2022 Page 4 of 5

void main(void)
{
 // create buffer for sprintf output (remember to include room for null)
 // this can be oversized, if output length is variable (within reason)
 char buff[21];

 // main entry point
 _DISABLE_COP();
 EnableInterrupts;

 PLL_To20MHz();
 Timer_Init(20E6, Timer_Prescale_32, 0, 0, Timer_Pin_Disco);
 lcd_Init();
 SWL_Init();

 for (;;)
 {
 // place formatted decimal output into this buffer
 // %d means substitute this part for the first argument, as decimal
 // rest of string is intact
 // sprintf returns the number of characters written, we don't care in this case
 (void)sprintf(buff, "Value: %d", 42); // outputs "Value: 42"
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;

 // %x HEX, with lowercase a-f where shown
 (void)sprintf(buff, "%x", 42); // outputs "2a"
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;

 // %X HEX, with uppercase A-F where shown
 (void)sprintf(buff, "%X", 42); // outputs "2A"
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;

 // other examples - floating point, width, precision, padding
 // %f floating point, natural (arg must be float)
 (void)sprintf(buff, "%f", 42 / 3.1f); // outputs "13.548387"
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;

 // %f floating point, natural width, 2 DP precison (arg must be float)
 (void)sprintf(buff, "%0.2f", 42 / 3.1f); // outputs "13.55"
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;

 // %f floating point, min 12 character width, 2 DP precison (arg must be float)
 (void)sprintf(buff, "%12.2f", 42 / 3.1f); // outputs " 13.55" (seven spaces + 5 chars == 12)
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;

 // %d, 4 character width, integer as decimal
 (void)sprintf(buff, "%4d", 42); // outputs " 42"
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;

R1.1 Oct 2022 Page 5 of 5

 // %d, 4 character width, precision means padding with zeroes, integer as decimal
 (void)sprintf(buff, "%4.4d", 42); // outputs "0042"
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;

 // %f, 10 character minimum, left-aligned, 2 DP precision
 (void)sprintf(buff, "*%-10.2f*", 42 / 3.1f); // outputs "*13.55 *"
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;

 // %ld, for printing long
 (void)sprintf(buff, "%ld", (long)-20E6); // outputs "-20000000"
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;

 // %lu, for printing long
 (void)sprintf(buff, "%lu", (unsigned long)20E6); // outputs "20000000"
 lcd_Clear();
 lcd_StringXY(0, 0, buff);
 while (!SWL_Transition(SWL_CTR, SWL_DebOff))
 ;
 }
}

