
Some devices operate as current sources, rather than as voltage sources. One such is the AD590 or AD592 temperature sensor, which produces a signal of 1 μ A per Kelvin degree, K. The Kelvin scale has the same step size as the Celsius scale, but it starts at 0 K for absolute zero, which is approximately -273°C. Using Multisim, build the circuit below.

V_{DC1} is "V_REF1" from "Sources" -> "SIGNAL_VOLTAGE_SOURCES" and I₁ is "DC_INTERACTIVE_CURRENT" from "Sources" -> "SIGNAL_CURRENT_SOURCES", and will simulate the temperature sensor.

Edit the potentiometer to have an "Increment" of 0.01%.

Edit I1 to have a "Maximum value" of 500uA and an "Increment" of 0.2%.

Set the current source to 273 μ A, then adjust the potentiometer until the output is a close as possible to 0 V.

Now, vary the current to the values indicated below, and record, to the nearest whole number, the output voltage observed.

Input Current, µA	Output Voltage, V				
268	-5				
269	-4				
270	-3				
271	-2				
272	-1				
273	0				
274					

275		2						
276		3						
277		4						
278		5						
What do these numbers best represent	t, in the real world	1?		1				
Temperature in Kelvin degrees								
Temperature in Celsius degrees								
⊖ Volts DC								
Now, to analyze this circuit. First, disable V _{DC1} by shorting it to ground. From this half of the circuit, determine the relationship								
between V_{out} and I_1 , which we will call		00000 x I						
Using this relationship, what would the	output voltage be	e at a temperature of ()°C? 273		V			
Clearly, this is much too large a voltage to be produced by a 741 op amp, which can only be powered from -30 V to +30 V, and the								
output voltage is limited to one or two volts less than the power supply voltage.								
Assuming that the combined resistance of R_1 and R_2 is 18.306 k Ω , determine the current supplied from V_{DC1} .								
273 μA								
Use this current to determine the DC of	ffect for the outpu	It that is provided by W	(when lis d		-273	v		
		it that is provided by v	DC1 WHEN 11 IS U		-215	V		
Clearly, this is also much too large a vo signal, the result is within range.	oltage for the 741	op amp to produce.	However, combin	ned with the	other part of the	output		
Combine your results into a transfer fur	nction:							
V _{out} = 1000000 x I _{in} -	273							
Verify that this transfer function produces the results you recorded in the table above. By injecting a current to compensate for the								
sensor current at 0°C, we have converted the sensor's current to voltages that directly represent the temperature in Celsius degrees.								
If we were using this circuit as a thermometer, we would display the voltage at the output as temperature in Celsius degrees. This is referred to as an "Inverse Transfer Function", where the output of our circuit is mathematically manipulated to display the measured quantity in its native unit of measure. Although ITFs are usually more complex, ours looks like this:								

T = V_{out}, °C