
The following should provide you with an understanding of some of the theory and terminology related to DACs (and ADCs).

DAC Terminology
Single Quadrant DAC – The DACs we’ve been looking at have all used positive (unsigned) binary inputs to produce
positive (or negative, if the amplifier is inverting) outputs.  In other words, on a coordinate plane, all the results would fit
into one quadrant, usually the top right quadrant.
Two-Quadrant DAC – We could level-shift the output so that the results would run from negative to positive, but still with
unsigned binary inputs.  In this arrangement, it would make sense to make zero volts match the middle of the binary
scale.  Our results would now occupy the two quadrants on the right side of the coordinate plane.
Four-Quadrant DAC – If we included some logic that converted signed binary inputs into signals that could produce
positive to negative output voltages, we would have a DAC that used the entire coordinate plane.  Most commercially-
available DACs can be configured as Four-Quadrant DACs, and are well-suited to software applications that need to
produce full-range output voltages from conventional 2’s complement signed binary inputs.
Digitizing – An analog signal has an infinite number of possible voltages over the range between its upper and lower
limits.  However, a digital signal has discrete output voltages with nothing in between.  When we represent an analog
signal digitally, we lose some of the accuracy of the signal because we must round each value to the nearest digital
equivalent.
Quantization Error – The error introduced will be between 0 and 1 LSB, i.e. the step size.  Many DACs offset their
values to make the minimum error ±0.5 LSB.
Step Size – The total range is one step less than the reference:

or

 
Sample Rate – For a DAC, the number of digital values converted to an analog output voltage per second is the Sample
Rate.  The sample rate must be at least twice the highest expected frequency component.  (This comes from Nyquist
communication theory.)
Resolution – The greater the possible number of digitizing values, the better the signal can be approximated.  High
resolution means low Quantization Error, but requires more bits.
Linearity – A linear DAC will show a straight-line relationship between the binary input and the voltage output.  As a
specification, Linearity states how close to a straight line you can expect the output to be.
Monotonicity – If, as the binary input ramps up, the output from a DAC does not always step up as expected, (i.e. some
steps actually drop below the previous value), the DAC is not Monotonic.
 
Answer the following questions about an 8-bit Single Quadrant DAC.

If the output values range from 0 V to +10.0 V, what is the step size?  Give your answer to five digits, in mV.  

 mV/step
Fill in the following table for selected input values.  Provide your answers in volts this time, to four decimal places.

Input value, hexadecimal Output Voltage, V

0x00  

0xFF  

0x80  

=Vstep
Vrange

−12n

=Vstep

Vref

2n

39.216

0

10

5.0196



0x93  

 
Answer the following questions for an 8-bit Two-Quadrant DAC in which the outputs have been shifted to provide a range from -2.50 V
to +2.50 V.

What is the step size for this DAC? Give your answer to 6 digits, in mV.     mV/step

Fill in the following table for selected input values.  Provide your answers in volts, to four decimal places.

Input value, hexadecimal Output Voltage, V

0x00  

0xFF  

0x7F  

0x80  

Hopefully, you just seen one of the conundrums of DACs:  If the range of values is nice, the step size will be awkward, and critical
values, like zero or half the scale, will not be available.  If the step size is nice, the range will be off by a single step at the top end. 
That's enough to drive any OCD person just a bit crazy!

Here's an example of a Four-Quadrant DAC with a nice step size.  Since this is a Four-Quadrant DAC, the binary inputs can be
negative or positive, using the 2's Complement system.  You'll probably need to convert the hexadecimal values into binary so you
can see whether they're negative or positive, then, for the negative ones, you'll have to do a 2's Complement conversion to see what
each negative number is.

A particular 12-bit Four-Quadrant DAC has a step size of 2.5 mV/step.

What is the most positive input value, in hexadecimal?     What is this, as a decimal number? 

  

What is the expected output voltage, based on the step size of 2.5 mV/step? Give your answer in volts, to four decimal places. 

  V

What is the most negative input value, in hexadecimal?      What is this, as a decimal number?  

 

What is the expected output voltage?    V

Fill in the following table to analyze the predicted outputs for two selected values.

Input, hexadecimal Decimal equivalent Output, V

0x42D   

0xA3C   

 

5.7647

19.6078

-2.5

2.5

-0.0098

0.0098

0x7FF

2047

5.1175

0x800

-2048

-5.12

1069 2.6725

-1476 -3.69



 

One of the issues with digitizing analog signals is the amount of memory required for storage.  Here's an example to quantify that
statement.

Let's analyze one minute of uncompressed video recording that's 1024x768 pixels, each in 32-bit colour, if the sample rate is 24
frames per second.

1024x768 pixels x 32 bits/pixel is just over 25 megabits (Mb) per frame.  Multiply that by 24 frames per second to get about 604 Mb
per second. Now, multiply by 60 seconds, and you get over 36 Gb of required storage!  Divide by 8 bits per byte, and the result is 4.53
GB of required memory for just one minute of uncompressed video, and that's not even HD!  In storage values, which are off by a
factor of 1.024, this is 4.42 GB.  Given that a standard DVD can store 4.7 GB, one minute of uncompressed video of this quality would
take essentially one whole DVD!

That brings up a very significant advancement that makes storage and distribution of digitized information possible:  Compression.

Compression involves the use of algorithms to reduce the number of bits that need to be stored, while still containing enough
information to represent the original data.  Compression comes in two general forms:  Lossless, where none of the data is lost, and
Lossy, where the decompressed information does not contain all of the original data, but is a close approximation.  JPEG
compression is lossy -- if you zoom in on a JPEG picture, you'll see blocks of pixels that are all the same colour and density -- those
regions were determined to have similar enough characteristics that they were treated as identical.  In the compression algorithm, the
characteristic is recorded once and is assigned to the matching group of pixels, saving a lot of memory.  MPEG-4 is also lossy.  One
of the techniques in this algorithm is only to record when pixels change enough to require an update.  So, a blue sky doesn't need to
be stored.  If you're sitting in front of a stationary camera doing a recording, none of the background needs to be updated -- just the
parts of your face that are changing.

So, it's clear there is a lot more that could be learned about digitizing real world events and storing them, but hopefully this has been
an informative introduction.


